Linear reinforcement learning in planning, grid fields, and cognitive control

Models of decision making have so far been unable to account for how humans’ choices can be flexible yet efficient. Here the authors present a linear reinforcement learning model which explains both flexibility, and rare limitations such as habits, as arising from efficient approximate computation

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Payam Piray, Nathaniel D. Daw
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/7a8106dd825c49a7af0c36eb812cd3c8
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

Documents similaires