Linear reinforcement learning in planning, grid fields, and cognitive control
Models of decision making have so far been unable to account for how humans’ choices can be flexible yet efficient. Here the authors present a linear reinforcement learning model which explains both flexibility, and rare limitations such as habits, as arising from efficient approximate computation
Enregistré dans:
Auteurs principaux: | Payam Piray, Nathaniel D. Daw |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7a8106dd825c49a7af0c36eb812cd3c8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A model for learning based on the joint estimation of stochasticity and volatility
par: Payam Piray, et autres
Publié: (2021) -
Operation of Distributed Battery Considering Demand Response Using Deep Reinforcement Learning in Grid Edge Control
par: Wenying Li, et autres
Publié: (2021) -
Path planning for the Platonic solids on prescribed grids by edge-rolling.
par: Ngoc Tam Lam, et autres
Publié: (2021) -
Self-controlling photonic-on-chip networks with deep reinforcement learning
par: Nguyen Do, et autres
Publié: (2021) -
Reinforcement learning control of a biomechanical model of the upper extremity
par: Florian Fischer, et autres
Publié: (2021)