Linear reinforcement learning in planning, grid fields, and cognitive control
Models of decision making have so far been unable to account for how humans’ choices can be flexible yet efficient. Here the authors present a linear reinforcement learning model which explains both flexibility, and rare limitations such as habits, as arising from efficient approximate computation
Guardado en:
Autores principales: | Payam Piray, Nathaniel D. Daw |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7a8106dd825c49a7af0c36eb812cd3c8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A model for learning based on the joint estimation of stochasticity and volatility
por: Payam Piray, et al.
Publicado: (2021) -
Operation of Distributed Battery Considering Demand Response Using Deep Reinforcement Learning in Grid Edge Control
por: Wenying Li, et al.
Publicado: (2021) -
Path planning for the Platonic solids on prescribed grids by edge-rolling.
por: Ngoc Tam Lam, et al.
Publicado: (2021) -
Self-controlling photonic-on-chip networks with deep reinforcement learning
por: Nguyen Do, et al.
Publicado: (2021) -
Reinforcement learning control of a biomechanical model of the upper extremity
por: Florian Fischer, et al.
Publicado: (2021)