Linear reinforcement learning in planning, grid fields, and cognitive control
Models of decision making have so far been unable to account for how humans’ choices can be flexible yet efficient. Here the authors present a linear reinforcement learning model which explains both flexibility, and rare limitations such as habits, as arising from efficient approximate computation
Enregistré dans:
Auteurs principaux: | , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7a8106dd825c49a7af0c36eb812cd3c8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|