A conserved RNA structural motif for organizing topology within picornaviral internal ribosome entry sites
Picornaviruses use modular RNA domains in their internal ribosome entry sites (IRESs) for translation through non-canonical, cap-independent mechanisms. Here the authors report the crystal structure of domain V from the IRES of hepatitis A virus (HAV) ssRNA genome, suggesting that the functional hom...
Saved in:
Main Authors: | Deepak Koirala, Yaming Shao, Yelena Koldobskaya, James R. Fuller, Andrew M. Watkins, Sandip A. Shelke, Evgeny V. Pilipenko, Rhiju Das, Phoebe A. Rice, Joseph A. Piccirilli |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2019
|
Subjects: | |
Online Access: | https://doaj.org/article/7a89e6027bf4428f95ad4027eb511ff7 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Structural basis for activation of fluorogenic dyes by an RNA aptamer lacking a G-quadruplex motif
by: Sandip A. Shelke, et al.
Published: (2018) -
A capsid-encoded PPxY-motif facilitates adenovirus entry.
by: Harald Wodrich, et al.
Published: (2010) -
First Evidence for Internal Ribosomal Entry Sites in Diverse Fungal Virus Genomes
by: Sotaro Chiba, et al.
Published: (2018) -
Synergistic Internal Ribosome Entry Site/MicroRNA-Based Approach for Flavivirus Attenuation and Live Vaccine Development
by: Konstantin A. Tsetsarkin, et al.
Published: (2017) -
Dengue and Zika Virus 5′ Untranslated Regions Harbor Internal Ribosomal Entry Site Functions
by: Yutong Song, et al.
Published: (2019)