Optical wave patterns of nonlinear Schrödinger equation with anti-cubic nonlinearity in optical fiber

This paper studies the anti-cubic nonlinear Schrödinger equation which describes the nonlinear dynamics of pulse propagation in optical metamaterials. Three different types of optical soliton solutions are obtained through the complete polynomial discriminant system method, and their topological sta...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fan Sun
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/7a9521284f844c08bfcdd3400569953e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7a9521284f844c08bfcdd3400569953e
record_format dspace
spelling oai:doaj.org-article:7a9521284f844c08bfcdd3400569953e2021-11-04T04:29:57ZOptical wave patterns of nonlinear Schrödinger equation with anti-cubic nonlinearity in optical fiber2211-379710.1016/j.rinp.2021.104889https://doaj.org/article/7a9521284f844c08bfcdd3400569953e2021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2211379721009268https://doaj.org/toc/2211-3797This paper studies the anti-cubic nonlinear Schrödinger equation which describes the nonlinear dynamics of pulse propagation in optical metamaterials. Three different types of optical soliton solutions are obtained through the complete polynomial discriminant system method, and their topological stability is analyzed. Under specific parameters, we give three-dimensional diagrams of solutions to prove the existence of solutions.Fan SunElsevierarticleOptical solitonsNonlinear Schrödinger equationComplete polynomial discriminant system methodPhysicsQC1-999ENResults in Physics, Vol 31, Iss , Pp 104889- (2021)
institution DOAJ
collection DOAJ
language EN
topic Optical solitons
Nonlinear Schrödinger equation
Complete polynomial discriminant system method
Physics
QC1-999
spellingShingle Optical solitons
Nonlinear Schrödinger equation
Complete polynomial discriminant system method
Physics
QC1-999
Fan Sun
Optical wave patterns of nonlinear Schrödinger equation with anti-cubic nonlinearity in optical fiber
description This paper studies the anti-cubic nonlinear Schrödinger equation which describes the nonlinear dynamics of pulse propagation in optical metamaterials. Three different types of optical soliton solutions are obtained through the complete polynomial discriminant system method, and their topological stability is analyzed. Under specific parameters, we give three-dimensional diagrams of solutions to prove the existence of solutions.
format article
author Fan Sun
author_facet Fan Sun
author_sort Fan Sun
title Optical wave patterns of nonlinear Schrödinger equation with anti-cubic nonlinearity in optical fiber
title_short Optical wave patterns of nonlinear Schrödinger equation with anti-cubic nonlinearity in optical fiber
title_full Optical wave patterns of nonlinear Schrödinger equation with anti-cubic nonlinearity in optical fiber
title_fullStr Optical wave patterns of nonlinear Schrödinger equation with anti-cubic nonlinearity in optical fiber
title_full_unstemmed Optical wave patterns of nonlinear Schrödinger equation with anti-cubic nonlinearity in optical fiber
title_sort optical wave patterns of nonlinear schrödinger equation with anti-cubic nonlinearity in optical fiber
publisher Elsevier
publishDate 2021
url https://doaj.org/article/7a9521284f844c08bfcdd3400569953e
work_keys_str_mv AT fansun opticalwavepatternsofnonlinearschrodingerequationwithanticubicnonlinearityinopticalfiber
_version_ 1718445282313633792