Low—Permittivity Copolymerized Polyimides with Fluorene Rigid Conjugated Structure
As the miniaturization of electronic appliances and microprocessors progresses, low-permittivity interlayer materials are becoming increasingly important for their suppression of electronic crosstalk, signal propagation delay and loss, and so forth. Herein, a kind of copolyimide (CPI) film with a “f...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7a9fed6021e04076a863e31a010e3d34 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | As the miniaturization of electronic appliances and microprocessors progresses, low-permittivity interlayer materials are becoming increasingly important for their suppression of electronic crosstalk, signal propagation delay and loss, and so forth. Herein, a kind of copolyimide (CPI) film with a “fluorene” rigid conjugated structure was prepared successfully. By introducing 9,9-Bis(3-fluoro-4-aminophenyl) fluorene as the rigid conjugated structure monomer, a series of CPI films with different molecular weights were fabricated by in situ polymerization, which not only achieved the reduction of permittivity but also maintained excellent thermodynamic stability. Moreover, the hydrophobicity of the CPI film was also improved with the increasing conjugated structure fraction. The lowest permittivity reached 2.53 at 10<sup>6</sup> Hz, while the thermal decomposition temperature (<i>T</i><sub>d5%</sub>) was up to 530 °C, and the tensile strength was ≥ 96 MPa. Thus, the CPI films are potential dielectric materials for microelectronic and insulation applications. |
---|