Phosphorylation of Lamin A/C at serine 22 modulates Nav1.5 function
Abstract Variants in the LMNA gene, which encodes for Lamin A/C, are associated with cardiac conduction disease (CCD). We previously reported that Lamin A/C variants p.R545H and p.A287Lfs*193, which were identified in CCD patients, decreased peak INa in HEK‐293 cells expressing Nav1.5. Decreased pea...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7aaf40cbff3446268244b82cff02bd1c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7aaf40cbff3446268244b82cff02bd1c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7aaf40cbff3446268244b82cff02bd1c2021-11-27T15:48:30ZPhosphorylation of Lamin A/C at serine 22 modulates Nav1.5 function2051-817X10.14814/phy2.15121https://doaj.org/article/7aaf40cbff3446268244b82cff02bd1c2021-11-01T00:00:00Zhttps://doi.org/10.14814/phy2.15121https://doaj.org/toc/2051-817XAbstract Variants in the LMNA gene, which encodes for Lamin A/C, are associated with cardiac conduction disease (CCD). We previously reported that Lamin A/C variants p.R545H and p.A287Lfs*193, which were identified in CCD patients, decreased peak INa in HEK‐293 cells expressing Nav1.5. Decreased peak INa in the cardiac conduction system could account for patients’ atrioventricular block. We found that serine 22 (Ser 22) phosphorylation of Lamin A/C was decreased in the p.R545H variant and hypothesized that lamin phosphorylation modulated Nav1.5 activity. To test this hypothesis, we assessed Nav1.5 function in HEK‐293 cells co‐transfected with LMNA variants or treated with the small molecule LBL1 (lamin‐binding ligand 1). LBL1 decreased Ser 22 phosphorylation by 65% but did not affect Nav1.5 function. To test the complete loss of phosphorylation, we generated a version of LMNA with serine 22 converted to alanine 22 (S22A‐LMNA); and a version of mutant R545H‐LMNA that mimics phosphorylation via serine 22 to aspartic acid 22 substitution (S22D‐R545H‐LMNA). We found that S22A‐LMNA inhibited Lamin‐mediated activation of peak INa by 63% and shifted voltage‐dependency of steady‐state inactivation of Nav1.5. Conversely, S22D‐R545H‐LMNA abolished the effects of mutant R545H‐LMNA on voltage‐dependency but not peak INa. We conclude that Lamin A/C Ser 22 phosphorylation can modulate Nav1.5 function and contributes to the mechanism by which R545H‐LMNA alters Nav1.5 function. The differential impact of complete versus partial loss of Ser 22 phosphorylation suggests a threshold of phosphorylation that is required for full Nav1.5 modulation. This is the first study to link Lamin A/C phosphorylation to Nav1.5 function.Michael A. OlaopaTomohiko AiBo ChaoXiangshu XiaoMatteo VattaBeth A. HabeckerWileyarticlecardiac conduction diseaseLamin phosphorylationNav1.5PhysiologyQP1-981ENPhysiological Reports, Vol 9, Iss 22, Pp n/a-n/a (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
cardiac conduction disease Lamin phosphorylation Nav1.5 Physiology QP1-981 |
spellingShingle |
cardiac conduction disease Lamin phosphorylation Nav1.5 Physiology QP1-981 Michael A. Olaopa Tomohiko Ai Bo Chao Xiangshu Xiao Matteo Vatta Beth A. Habecker Phosphorylation of Lamin A/C at serine 22 modulates Nav1.5 function |
description |
Abstract Variants in the LMNA gene, which encodes for Lamin A/C, are associated with cardiac conduction disease (CCD). We previously reported that Lamin A/C variants p.R545H and p.A287Lfs*193, which were identified in CCD patients, decreased peak INa in HEK‐293 cells expressing Nav1.5. Decreased peak INa in the cardiac conduction system could account for patients’ atrioventricular block. We found that serine 22 (Ser 22) phosphorylation of Lamin A/C was decreased in the p.R545H variant and hypothesized that lamin phosphorylation modulated Nav1.5 activity. To test this hypothesis, we assessed Nav1.5 function in HEK‐293 cells co‐transfected with LMNA variants or treated with the small molecule LBL1 (lamin‐binding ligand 1). LBL1 decreased Ser 22 phosphorylation by 65% but did not affect Nav1.5 function. To test the complete loss of phosphorylation, we generated a version of LMNA with serine 22 converted to alanine 22 (S22A‐LMNA); and a version of mutant R545H‐LMNA that mimics phosphorylation via serine 22 to aspartic acid 22 substitution (S22D‐R545H‐LMNA). We found that S22A‐LMNA inhibited Lamin‐mediated activation of peak INa by 63% and shifted voltage‐dependency of steady‐state inactivation of Nav1.5. Conversely, S22D‐R545H‐LMNA abolished the effects of mutant R545H‐LMNA on voltage‐dependency but not peak INa. We conclude that Lamin A/C Ser 22 phosphorylation can modulate Nav1.5 function and contributes to the mechanism by which R545H‐LMNA alters Nav1.5 function. The differential impact of complete versus partial loss of Ser 22 phosphorylation suggests a threshold of phosphorylation that is required for full Nav1.5 modulation. This is the first study to link Lamin A/C phosphorylation to Nav1.5 function. |
format |
article |
author |
Michael A. Olaopa Tomohiko Ai Bo Chao Xiangshu Xiao Matteo Vatta Beth A. Habecker |
author_facet |
Michael A. Olaopa Tomohiko Ai Bo Chao Xiangshu Xiao Matteo Vatta Beth A. Habecker |
author_sort |
Michael A. Olaopa |
title |
Phosphorylation of Lamin A/C at serine 22 modulates Nav1.5 function |
title_short |
Phosphorylation of Lamin A/C at serine 22 modulates Nav1.5 function |
title_full |
Phosphorylation of Lamin A/C at serine 22 modulates Nav1.5 function |
title_fullStr |
Phosphorylation of Lamin A/C at serine 22 modulates Nav1.5 function |
title_full_unstemmed |
Phosphorylation of Lamin A/C at serine 22 modulates Nav1.5 function |
title_sort |
phosphorylation of lamin a/c at serine 22 modulates nav1.5 function |
publisher |
Wiley |
publishDate |
2021 |
url |
https://doaj.org/article/7aaf40cbff3446268244b82cff02bd1c |
work_keys_str_mv |
AT michaelaolaopa phosphorylationoflaminacatserine22modulatesnav15function AT tomohikoai phosphorylationoflaminacatserine22modulatesnav15function AT bochao phosphorylationoflaminacatserine22modulatesnav15function AT xiangshuxiao phosphorylationoflaminacatserine22modulatesnav15function AT matteovatta phosphorylationoflaminacatserine22modulatesnav15function AT bethahabecker phosphorylationoflaminacatserine22modulatesnav15function |
_version_ |
1718408510628167680 |