Magnetic Resonance Image Feature Analysis under Deep Learning in Diagnosis of Neurological Rehabilitation in Patients with Cerebrovascular Diseases
To explore the impact of magnetic resonance imaging (MRI) image features based on deep learning algorithms on the neurological rehabilitation of patients with cerebrovascular diseases, eighty patients with acute cerebrovascular disease were selected as the research objects. According to whether the...
Enregistré dans:
Auteurs principaux: | Xue Li, Wenjun Ji, Hufei Chang, Chunyan Yang, Zhao Rong, Jun Hao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi-Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7ab8392127f84339839f40f0f0a67e3b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Risk Factors of Restroke in Patients with Lacunar Cerebral Infarction Using Magnetic Resonance Imaging Image Features under Deep Learning Algorithm
par: Chunli Ma, et autres
Publié: (2021) -
Tic Disorder of Children Analyzed and Diagnosed by Magnetic Resonance Imaging Features under Convolutional Neural Network
par: Chunxia Wu, et autres
Publié: (2021) -
Magnetic Resonance Imaging Segmentation on the Basis of Boundary Tracking Algorithm in Lung Cancer Surgery
par: Chengmin Liu, et autres
Publié: (2021) -
A magnetic resonance (MR) compatible selective brain temperature manipulation system for preclinical study
par: Cai Y, et autres
Publié: (2012) -
Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla
par: Fredén Jansson KJ, et autres
Publié: (2015)