Magnetic Resonance Image Feature Analysis under Deep Learning in Diagnosis of Neurological Rehabilitation in Patients with Cerebrovascular Diseases
To explore the impact of magnetic resonance imaging (MRI) image features based on deep learning algorithms on the neurological rehabilitation of patients with cerebrovascular diseases, eighty patients with acute cerebrovascular disease were selected as the research objects. According to whether the...
Guardado en:
Autores principales: | Xue Li, Wenjun Ji, Hufei Chang, Chunyan Yang, Zhao Rong, Jun Hao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi-Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7ab8392127f84339839f40f0f0a67e3b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Risk Factors of Restroke in Patients with Lacunar Cerebral Infarction Using Magnetic Resonance Imaging Image Features under Deep Learning Algorithm
por: Chunli Ma, et al.
Publicado: (2021) -
Tic Disorder of Children Analyzed and Diagnosed by Magnetic Resonance Imaging Features under Convolutional Neural Network
por: Chunxia Wu, et al.
Publicado: (2021) -
Magnetic Resonance Imaging Segmentation on the Basis of Boundary Tracking Algorithm in Lung Cancer Surgery
por: Chengmin Liu, et al.
Publicado: (2021) -
A magnetic resonance (MR) compatible selective brain temperature manipulation system for preclinical study
por: Cai Y, et al.
Publicado: (2012) -
Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla
por: Fredén Jansson KJ, et al.
Publicado: (2015)