Improved LFIAs for highly sensitive detection of BNP at point-of-care

Yan Gong,1–3 Jie Hu,1,2 Jane Ru Choi,2 Minli You,1,2 Yamin Zheng,1,2 Bo Xu,4 Ting Wen,3 Feng Xu1,2 1The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong Univ...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gong Y, Hu J, Choi JR, You M, Zheng Y, Xu B, Wen T, Xu F
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2017
Materias:
Acceso en línea:https://doaj.org/article/7abb43e7f5074fbe873d3949985b7c7f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7abb43e7f5074fbe873d3949985b7c7f
record_format dspace
spelling oai:doaj.org-article:7abb43e7f5074fbe873d3949985b7c7f2021-12-02T04:54:08ZImproved LFIAs for highly sensitive detection of BNP at point-of-care1178-2013https://doaj.org/article/7abb43e7f5074fbe873d3949985b7c7f2017-06-01T00:00:00Zhttps://www.dovepress.com/improved-lfias-for-highly-sensitive-detection-of-bnp-at-point-of-care-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Yan Gong,1–3 Jie Hu,1,2 Jane Ru Choi,2 Minli You,1,2 Yamin Zheng,1,2 Bo Xu,4 Ting Wen,3 Feng Xu1,2 1The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, 2Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, 3Xi’an Diandi Biotech Company, 4School of Finance and Economics, Xi’an Jiaotong University, Xi’an, People’s Republic of China Abstract: Heart failure (HF) has become a major cause of morbidity and mortality with a significant global economic burden. Although well-established clinical tests could provide early diagnosis, access to these tests is limited in developing countries, where a relatively higher incidence of HF is present. This has prompted an urgent need for developing a cost-effective, rapid and robust diagnostic tool for point-of-care (POC) detection of HF. Lateral flow immunoassay (LFIA) has found widespread applications in POC diagnostics. However, the low sensitivity of LFIA limits its ability to detect important HF biomarkers (e.g., brain natriuretic peptide [BNP]) that are normally present in low concentration in blood. To address this issue, we developed an improved LFIA by optimizing the gold nanoparticle (GNP)–antibody conjugate conditions (e.g., the conjugate pH and the amount of added antibody), the diameter of GNP and the concentration of antibody embedded on the test line and modifying the structure of test strip. Through these improvements, the proposed test strip enabled the detection of BNP down to 0.1 ng/mL within 10–15 min, presenting ~15-fold sensitivity enhancement over conventional lateral flow assay. We also successfully applied our LFIA in the analysis of BNP in human serum samples, highlighting its potential use for clinical assessment of HF. The developed LFIA for BNP could rapidly rule out HF with the naked eye, offering tremendous potential for POC test and personalized medicine. Keywords: heart failure, biomarker, colorimetric assays, personalized medicineGong YHu JChoi JRYou MZheng YXu BWen TXu FDove Medical PressarticleImproved lateral flow immunoassayBrain natriuretic peptideHighly sensitive detectionPoint of careMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 12, Pp 4455-4466 (2017)
institution DOAJ
collection DOAJ
language EN
topic Improved lateral flow immunoassay
Brain natriuretic peptide
Highly sensitive detection
Point of care
Medicine (General)
R5-920
spellingShingle Improved lateral flow immunoassay
Brain natriuretic peptide
Highly sensitive detection
Point of care
Medicine (General)
R5-920
Gong Y
Hu J
Choi JR
You M
Zheng Y
Xu B
Wen T
Xu F
Improved LFIAs for highly sensitive detection of BNP at point-of-care
description Yan Gong,1–3 Jie Hu,1,2 Jane Ru Choi,2 Minli You,1,2 Yamin Zheng,1,2 Bo Xu,4 Ting Wen,3 Feng Xu1,2 1The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, 2Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, 3Xi’an Diandi Biotech Company, 4School of Finance and Economics, Xi’an Jiaotong University, Xi’an, People’s Republic of China Abstract: Heart failure (HF) has become a major cause of morbidity and mortality with a significant global economic burden. Although well-established clinical tests could provide early diagnosis, access to these tests is limited in developing countries, where a relatively higher incidence of HF is present. This has prompted an urgent need for developing a cost-effective, rapid and robust diagnostic tool for point-of-care (POC) detection of HF. Lateral flow immunoassay (LFIA) has found widespread applications in POC diagnostics. However, the low sensitivity of LFIA limits its ability to detect important HF biomarkers (e.g., brain natriuretic peptide [BNP]) that are normally present in low concentration in blood. To address this issue, we developed an improved LFIA by optimizing the gold nanoparticle (GNP)–antibody conjugate conditions (e.g., the conjugate pH and the amount of added antibody), the diameter of GNP and the concentration of antibody embedded on the test line and modifying the structure of test strip. Through these improvements, the proposed test strip enabled the detection of BNP down to 0.1 ng/mL within 10–15 min, presenting ~15-fold sensitivity enhancement over conventional lateral flow assay. We also successfully applied our LFIA in the analysis of BNP in human serum samples, highlighting its potential use for clinical assessment of HF. The developed LFIA for BNP could rapidly rule out HF with the naked eye, offering tremendous potential for POC test and personalized medicine. Keywords: heart failure, biomarker, colorimetric assays, personalized medicine
format article
author Gong Y
Hu J
Choi JR
You M
Zheng Y
Xu B
Wen T
Xu F
author_facet Gong Y
Hu J
Choi JR
You M
Zheng Y
Xu B
Wen T
Xu F
author_sort Gong Y
title Improved LFIAs for highly sensitive detection of BNP at point-of-care
title_short Improved LFIAs for highly sensitive detection of BNP at point-of-care
title_full Improved LFIAs for highly sensitive detection of BNP at point-of-care
title_fullStr Improved LFIAs for highly sensitive detection of BNP at point-of-care
title_full_unstemmed Improved LFIAs for highly sensitive detection of BNP at point-of-care
title_sort improved lfias for highly sensitive detection of bnp at point-of-care
publisher Dove Medical Press
publishDate 2017
url https://doaj.org/article/7abb43e7f5074fbe873d3949985b7c7f
work_keys_str_mv AT gongy improvedlfiasforhighlysensitivedetectionofbnpatpointofcare
AT huj improvedlfiasforhighlysensitivedetectionofbnpatpointofcare
AT choijr improvedlfiasforhighlysensitivedetectionofbnpatpointofcare
AT youm improvedlfiasforhighlysensitivedetectionofbnpatpointofcare
AT zhengy improvedlfiasforhighlysensitivedetectionofbnpatpointofcare
AT xub improvedlfiasforhighlysensitivedetectionofbnpatpointofcare
AT went improvedlfiasforhighlysensitivedetectionofbnpatpointofcare
AT xuf improvedlfiasforhighlysensitivedetectionofbnpatpointofcare
_version_ 1718401014972809216