Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis
Using real-world data and past vaccination data, we conducted a large-scale experiment to quantify bias, precision and timeliness of different study designs to estimate historical background (expected) compared to post-vaccination (observed) rates of safety events for several vaccines. We used negat...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7abbd4f540e14f1282e22242e106df3b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7abbd4f540e14f1282e22242e106df3b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7abbd4f540e14f1282e22242e106df3b2021-11-30T19:18:55ZBias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis1663-981210.3389/fphar.2021.773875https://doaj.org/article/7abbd4f540e14f1282e22242e106df3b2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fphar.2021.773875/fullhttps://doaj.org/toc/1663-9812Using real-world data and past vaccination data, we conducted a large-scale experiment to quantify bias, precision and timeliness of different study designs to estimate historical background (expected) compared to post-vaccination (observed) rates of safety events for several vaccines. We used negative (not causally related) and positive control outcomes. The latter were synthetically generated true safety signals with incident rate ratios ranging from 1.5 to 4. Observed vs. expected analysis using within-database historical background rates is a sensitive but unspecific method for the identification of potential vaccine safety signals. Despite good discrimination, most analyses showed a tendency to overestimate risks, with 20%-100% type 1 error, but low (0% to 20%) type 2 error in the large databases included in our study. Efforts to improve the comparability of background and post-vaccine rates, including age-sex adjustment and anchoring background rates around a visit, reduced type 1 error and improved precision but residual systematic error persisted. Additionally, empirical calibration dramatically reduced type 1 to nominal but came at the cost of increasing type 2 error.Xintong LiLana YH LaiAnna OstropoletsFaaizah ArshadEng Hooi TanPaula CasajustThamir M. AlshammariTalita Duarte-SallesEvan P. MintyCarlos AreiaNicole PrattPatrick B. RyanPatrick B. RyanGeorge HripcsakGeorge HripcsakMarc A. SuchardMarc A. SuchardMartijn J. SchuemieMartijn J. SchuemieMartijn J. SchuemieDaniel Prieto-AlhambraDaniel Prieto-AlhambraFrontiers Media S.A.articleincidence ratevaccine safetyreal world dataempirical - comparisonbackground rateTherapeutics. PharmacologyRM1-950ENFrontiers in Pharmacology, Vol 12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
incidence rate vaccine safety real world data empirical - comparison background rate Therapeutics. Pharmacology RM1-950 |
spellingShingle |
incidence rate vaccine safety real world data empirical - comparison background rate Therapeutics. Pharmacology RM1-950 Xintong Li Lana YH Lai Anna Ostropolets Faaizah Arshad Eng Hooi Tan Paula Casajust Thamir M. Alshammari Talita Duarte-Salles Evan P. Minty Carlos Areia Nicole Pratt Patrick B. Ryan Patrick B. Ryan George Hripcsak George Hripcsak Marc A. Suchard Marc A. Suchard Martijn J. Schuemie Martijn J. Schuemie Martijn J. Schuemie Daniel Prieto-Alhambra Daniel Prieto-Alhambra Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis |
description |
Using real-world data and past vaccination data, we conducted a large-scale experiment to quantify bias, precision and timeliness of different study designs to estimate historical background (expected) compared to post-vaccination (observed) rates of safety events for several vaccines. We used negative (not causally related) and positive control outcomes. The latter were synthetically generated true safety signals with incident rate ratios ranging from 1.5 to 4. Observed vs. expected analysis using within-database historical background rates is a sensitive but unspecific method for the identification of potential vaccine safety signals. Despite good discrimination, most analyses showed a tendency to overestimate risks, with 20%-100% type 1 error, but low (0% to 20%) type 2 error in the large databases included in our study. Efforts to improve the comparability of background and post-vaccine rates, including age-sex adjustment and anchoring background rates around a visit, reduced type 1 error and improved precision but residual systematic error persisted. Additionally, empirical calibration dramatically reduced type 1 to nominal but came at the cost of increasing type 2 error. |
format |
article |
author |
Xintong Li Lana YH Lai Anna Ostropolets Faaizah Arshad Eng Hooi Tan Paula Casajust Thamir M. Alshammari Talita Duarte-Salles Evan P. Minty Carlos Areia Nicole Pratt Patrick B. Ryan Patrick B. Ryan George Hripcsak George Hripcsak Marc A. Suchard Marc A. Suchard Martijn J. Schuemie Martijn J. Schuemie Martijn J. Schuemie Daniel Prieto-Alhambra Daniel Prieto-Alhambra |
author_facet |
Xintong Li Lana YH Lai Anna Ostropolets Faaizah Arshad Eng Hooi Tan Paula Casajust Thamir M. Alshammari Talita Duarte-Salles Evan P. Minty Carlos Areia Nicole Pratt Patrick B. Ryan Patrick B. Ryan George Hripcsak George Hripcsak Marc A. Suchard Marc A. Suchard Martijn J. Schuemie Martijn J. Schuemie Martijn J. Schuemie Daniel Prieto-Alhambra Daniel Prieto-Alhambra |
author_sort |
Xintong Li |
title |
Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis |
title_short |
Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis |
title_full |
Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis |
title_fullStr |
Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis |
title_full_unstemmed |
Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis |
title_sort |
bias, precision and timeliness of historical (background) rate comparison methods for vaccine safety monitoring: an empirical multi-database analysis |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/7abbd4f540e14f1282e22242e106df3b |
work_keys_str_mv |
AT xintongli biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT lanayhlai biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT annaostropolets biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT faaizaharshad biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT enghooitan biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT paulacasajust biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT thamirmalshammari biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT talitaduartesalles biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT evanpminty biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT carlosareia biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT nicolepratt biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT patrickbryan biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT patrickbryan biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT georgehripcsak biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT georgehripcsak biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT marcasuchard biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT marcasuchard biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT martijnjschuemie biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT martijnjschuemie biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT martijnjschuemie biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT danielprietoalhambra biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis AT danielprietoalhambra biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis |
_version_ |
1718406333270589440 |