Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis

Using real-world data and past vaccination data, we conducted a large-scale experiment to quantify bias, precision and timeliness of different study designs to estimate historical background (expected) compared to post-vaccination (observed) rates of safety events for several vaccines. We used negat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xintong Li, Lana YH Lai, Anna Ostropolets, Faaizah Arshad, Eng Hooi Tan, Paula Casajust, Thamir M. Alshammari, Talita Duarte-Salles, Evan P. Minty, Carlos Areia, Nicole Pratt, Patrick B. Ryan, George Hripcsak, Marc A. Suchard, Martijn J. Schuemie, Daniel Prieto-Alhambra
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/7abbd4f540e14f1282e22242e106df3b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7abbd4f540e14f1282e22242e106df3b
record_format dspace
spelling oai:doaj.org-article:7abbd4f540e14f1282e22242e106df3b2021-11-30T19:18:55ZBias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis1663-981210.3389/fphar.2021.773875https://doaj.org/article/7abbd4f540e14f1282e22242e106df3b2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fphar.2021.773875/fullhttps://doaj.org/toc/1663-9812Using real-world data and past vaccination data, we conducted a large-scale experiment to quantify bias, precision and timeliness of different study designs to estimate historical background (expected) compared to post-vaccination (observed) rates of safety events for several vaccines. We used negative (not causally related) and positive control outcomes. The latter were synthetically generated true safety signals with incident rate ratios ranging from 1.5 to 4. Observed vs. expected analysis using within-database historical background rates is a sensitive but unspecific method for the identification of potential vaccine safety signals. Despite good discrimination, most analyses showed a tendency to overestimate risks, with 20%-100% type 1 error, but low (0% to 20%) type 2 error in the large databases included in our study. Efforts to improve the comparability of background and post-vaccine rates, including age-sex adjustment and anchoring background rates around a visit, reduced type 1 error and improved precision but residual systematic error persisted. Additionally, empirical calibration dramatically reduced type 1 to nominal but came at the cost of increasing type 2 error.Xintong LiLana YH LaiAnna OstropoletsFaaizah ArshadEng Hooi TanPaula CasajustThamir M. AlshammariTalita Duarte-SallesEvan P. MintyCarlos AreiaNicole PrattPatrick B. RyanPatrick B. RyanGeorge HripcsakGeorge HripcsakMarc A. SuchardMarc A. SuchardMartijn J. SchuemieMartijn J. SchuemieMartijn J. SchuemieDaniel Prieto-AlhambraDaniel Prieto-AlhambraFrontiers Media S.A.articleincidence ratevaccine safetyreal world dataempirical - comparisonbackground rateTherapeutics. PharmacologyRM1-950ENFrontiers in Pharmacology, Vol 12 (2021)
institution DOAJ
collection DOAJ
language EN
topic incidence rate
vaccine safety
real world data
empirical - comparison
background rate
Therapeutics. Pharmacology
RM1-950
spellingShingle incidence rate
vaccine safety
real world data
empirical - comparison
background rate
Therapeutics. Pharmacology
RM1-950
Xintong Li
Lana YH Lai
Anna Ostropolets
Faaizah Arshad
Eng Hooi Tan
Paula Casajust
Thamir M. Alshammari
Talita Duarte-Salles
Evan P. Minty
Carlos Areia
Nicole Pratt
Patrick B. Ryan
Patrick B. Ryan
George Hripcsak
George Hripcsak
Marc A. Suchard
Marc A. Suchard
Martijn J. Schuemie
Martijn J. Schuemie
Martijn J. Schuemie
Daniel Prieto-Alhambra
Daniel Prieto-Alhambra
Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis
description Using real-world data and past vaccination data, we conducted a large-scale experiment to quantify bias, precision and timeliness of different study designs to estimate historical background (expected) compared to post-vaccination (observed) rates of safety events for several vaccines. We used negative (not causally related) and positive control outcomes. The latter were synthetically generated true safety signals with incident rate ratios ranging from 1.5 to 4. Observed vs. expected analysis using within-database historical background rates is a sensitive but unspecific method for the identification of potential vaccine safety signals. Despite good discrimination, most analyses showed a tendency to overestimate risks, with 20%-100% type 1 error, but low (0% to 20%) type 2 error in the large databases included in our study. Efforts to improve the comparability of background and post-vaccine rates, including age-sex adjustment and anchoring background rates around a visit, reduced type 1 error and improved precision but residual systematic error persisted. Additionally, empirical calibration dramatically reduced type 1 to nominal but came at the cost of increasing type 2 error.
format article
author Xintong Li
Lana YH Lai
Anna Ostropolets
Faaizah Arshad
Eng Hooi Tan
Paula Casajust
Thamir M. Alshammari
Talita Duarte-Salles
Evan P. Minty
Carlos Areia
Nicole Pratt
Patrick B. Ryan
Patrick B. Ryan
George Hripcsak
George Hripcsak
Marc A. Suchard
Marc A. Suchard
Martijn J. Schuemie
Martijn J. Schuemie
Martijn J. Schuemie
Daniel Prieto-Alhambra
Daniel Prieto-Alhambra
author_facet Xintong Li
Lana YH Lai
Anna Ostropolets
Faaizah Arshad
Eng Hooi Tan
Paula Casajust
Thamir M. Alshammari
Talita Duarte-Salles
Evan P. Minty
Carlos Areia
Nicole Pratt
Patrick B. Ryan
Patrick B. Ryan
George Hripcsak
George Hripcsak
Marc A. Suchard
Marc A. Suchard
Martijn J. Schuemie
Martijn J. Schuemie
Martijn J. Schuemie
Daniel Prieto-Alhambra
Daniel Prieto-Alhambra
author_sort Xintong Li
title Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis
title_short Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis
title_full Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis
title_fullStr Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis
title_full_unstemmed Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis
title_sort bias, precision and timeliness of historical (background) rate comparison methods for vaccine safety monitoring: an empirical multi-database analysis
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/7abbd4f540e14f1282e22242e106df3b
work_keys_str_mv AT xintongli biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT lanayhlai biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT annaostropolets biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT faaizaharshad biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT enghooitan biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT paulacasajust biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT thamirmalshammari biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT talitaduartesalles biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT evanpminty biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT carlosareia biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT nicolepratt biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT patrickbryan biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT patrickbryan biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT georgehripcsak biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT georgehripcsak biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT marcasuchard biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT marcasuchard biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT martijnjschuemie biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT martijnjschuemie biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT martijnjschuemie biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT danielprietoalhambra biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT danielprietoalhambra biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
_version_ 1718406333270589440