Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil

Low-resource settings can face additional challenges in managing the COVID-19 pandemic. Here, the authors use mathematical modelling to investigate transmission in the state of Bahia, Brazil, and quantify control measures needed to prevent the hospital system becoming overwhelmed.

Guardado en:
Detalles Bibliográficos
Autores principales: Juliane F. Oliveira, Daniel C. P. Jorge, Rafael V. Veiga, Moreno S. Rodrigues, Matheus F. Torquato, Nivea B. da Silva, Rosemeire L. Fiaccone, Luciana L. Cardim, Felipe A. C. Pereira, Caio P. de Castro, Aureliano S. S. Paiva, Alan A. S. Amad, Ernesto A. B. F. Lima, Diego S. Souza, Suani T. R. Pinho, Pablo Ivan P. Ramos, Roberto F. S. Andrade
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/7ac0b52971ed429ead95ba31036d770e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7ac0b52971ed429ead95ba31036d770e
record_format dspace
spelling oai:doaj.org-article:7ac0b52971ed429ead95ba31036d770e2021-12-02T14:11:45ZMathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil10.1038/s41467-020-19798-32041-1723https://doaj.org/article/7ac0b52971ed429ead95ba31036d770e2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19798-3https://doaj.org/toc/2041-1723Low-resource settings can face additional challenges in managing the COVID-19 pandemic. Here, the authors use mathematical modelling to investigate transmission in the state of Bahia, Brazil, and quantify control measures needed to prevent the hospital system becoming overwhelmed.Juliane F. OliveiraDaniel C. P. JorgeRafael V. VeigaMoreno S. RodriguesMatheus F. TorquatoNivea B. da SilvaRosemeire L. FiacconeLuciana L. CardimFelipe A. C. PereiraCaio P. de CastroAureliano S. S. PaivaAlan A. S. AmadErnesto A. B. F. LimaDiego S. SouzaSuani T. R. PinhoPablo Ivan P. RamosRoberto F. S. AndradeNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Juliane F. Oliveira
Daniel C. P. Jorge
Rafael V. Veiga
Moreno S. Rodrigues
Matheus F. Torquato
Nivea B. da Silva
Rosemeire L. Fiaccone
Luciana L. Cardim
Felipe A. C. Pereira
Caio P. de Castro
Aureliano S. S. Paiva
Alan A. S. Amad
Ernesto A. B. F. Lima
Diego S. Souza
Suani T. R. Pinho
Pablo Ivan P. Ramos
Roberto F. S. Andrade
Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil
description Low-resource settings can face additional challenges in managing the COVID-19 pandemic. Here, the authors use mathematical modelling to investigate transmission in the state of Bahia, Brazil, and quantify control measures needed to prevent the hospital system becoming overwhelmed.
format article
author Juliane F. Oliveira
Daniel C. P. Jorge
Rafael V. Veiga
Moreno S. Rodrigues
Matheus F. Torquato
Nivea B. da Silva
Rosemeire L. Fiaccone
Luciana L. Cardim
Felipe A. C. Pereira
Caio P. de Castro
Aureliano S. S. Paiva
Alan A. S. Amad
Ernesto A. B. F. Lima
Diego S. Souza
Suani T. R. Pinho
Pablo Ivan P. Ramos
Roberto F. S. Andrade
author_facet Juliane F. Oliveira
Daniel C. P. Jorge
Rafael V. Veiga
Moreno S. Rodrigues
Matheus F. Torquato
Nivea B. da Silva
Rosemeire L. Fiaccone
Luciana L. Cardim
Felipe A. C. Pereira
Caio P. de Castro
Aureliano S. S. Paiva
Alan A. S. Amad
Ernesto A. B. F. Lima
Diego S. Souza
Suani T. R. Pinho
Pablo Ivan P. Ramos
Roberto F. S. Andrade
author_sort Juliane F. Oliveira
title Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil
title_short Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil
title_full Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil
title_fullStr Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil
title_full_unstemmed Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil
title_sort mathematical modeling of covid-19 in 14.8 million individuals in bahia, brazil
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/7ac0b52971ed429ead95ba31036d770e
work_keys_str_mv AT julianefoliveira mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT danielcpjorge mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT rafaelvveiga mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT morenosrodrigues mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT matheusftorquato mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT niveabdasilva mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT rosemeirelfiaccone mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT lucianalcardim mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT felipeacpereira mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT caiopdecastro mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT aurelianosspaiva mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT alanasamad mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT ernestoabflima mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT diegossouza mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT suanitrpinho mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT pabloivanpramos mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT robertofsandrade mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
_version_ 1718391852806176768