Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil
Low-resource settings can face additional challenges in managing the COVID-19 pandemic. Here, the authors use mathematical modelling to investigate transmission in the state of Bahia, Brazil, and quantify control measures needed to prevent the hospital system becoming overwhelmed.
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7ac0b52971ed429ead95ba31036d770e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7ac0b52971ed429ead95ba31036d770e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7ac0b52971ed429ead95ba31036d770e2021-12-02T14:11:45ZMathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil10.1038/s41467-020-19798-32041-1723https://doaj.org/article/7ac0b52971ed429ead95ba31036d770e2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19798-3https://doaj.org/toc/2041-1723Low-resource settings can face additional challenges in managing the COVID-19 pandemic. Here, the authors use mathematical modelling to investigate transmission in the state of Bahia, Brazil, and quantify control measures needed to prevent the hospital system becoming overwhelmed.Juliane F. OliveiraDaniel C. P. JorgeRafael V. VeigaMoreno S. RodriguesMatheus F. TorquatoNivea B. da SilvaRosemeire L. FiacconeLuciana L. CardimFelipe A. C. PereiraCaio P. de CastroAureliano S. S. PaivaAlan A. S. AmadErnesto A. B. F. LimaDiego S. SouzaSuani T. R. PinhoPablo Ivan P. RamosRoberto F. S. AndradeNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Juliane F. Oliveira Daniel C. P. Jorge Rafael V. Veiga Moreno S. Rodrigues Matheus F. Torquato Nivea B. da Silva Rosemeire L. Fiaccone Luciana L. Cardim Felipe A. C. Pereira Caio P. de Castro Aureliano S. S. Paiva Alan A. S. Amad Ernesto A. B. F. Lima Diego S. Souza Suani T. R. Pinho Pablo Ivan P. Ramos Roberto F. S. Andrade Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil |
description |
Low-resource settings can face additional challenges in managing the COVID-19 pandemic. Here, the authors use mathematical modelling to investigate transmission in the state of Bahia, Brazil, and quantify control measures needed to prevent the hospital system becoming overwhelmed. |
format |
article |
author |
Juliane F. Oliveira Daniel C. P. Jorge Rafael V. Veiga Moreno S. Rodrigues Matheus F. Torquato Nivea B. da Silva Rosemeire L. Fiaccone Luciana L. Cardim Felipe A. C. Pereira Caio P. de Castro Aureliano S. S. Paiva Alan A. S. Amad Ernesto A. B. F. Lima Diego S. Souza Suani T. R. Pinho Pablo Ivan P. Ramos Roberto F. S. Andrade |
author_facet |
Juliane F. Oliveira Daniel C. P. Jorge Rafael V. Veiga Moreno S. Rodrigues Matheus F. Torquato Nivea B. da Silva Rosemeire L. Fiaccone Luciana L. Cardim Felipe A. C. Pereira Caio P. de Castro Aureliano S. S. Paiva Alan A. S. Amad Ernesto A. B. F. Lima Diego S. Souza Suani T. R. Pinho Pablo Ivan P. Ramos Roberto F. S. Andrade |
author_sort |
Juliane F. Oliveira |
title |
Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil |
title_short |
Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil |
title_full |
Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil |
title_fullStr |
Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil |
title_full_unstemmed |
Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil |
title_sort |
mathematical modeling of covid-19 in 14.8 million individuals in bahia, brazil |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/7ac0b52971ed429ead95ba31036d770e |
work_keys_str_mv |
AT julianefoliveira mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil AT danielcpjorge mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil AT rafaelvveiga mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil AT morenosrodrigues mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil AT matheusftorquato mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil AT niveabdasilva mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil AT rosemeirelfiaccone mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil AT lucianalcardim mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil AT felipeacpereira mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil AT caiopdecastro mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil AT aurelianosspaiva mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil AT alanasamad mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil AT ernestoabflima mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil AT diegossouza mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil AT suanitrpinho mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil AT pabloivanpramos mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil AT robertofsandrade mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil |
_version_ |
1718391852806176768 |