Predicting postoperative pain following root canal treatment by using artificial neural network evaluation
Abstract This study aimed to evaluate the accuracy of back propagation (BP) artificial neural network model for predicting postoperative pain following root canal treatment (RCT). The BP neural network model was developed using MATLAB 7.0 neural network toolbox, and the functional projective relatio...
Enregistré dans:
Auteurs principaux: | Xin Gao, Xing Xin, Zhi Li, Wei Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7aedb08ad5e64a58a856af2f8d9f453a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
EFFECTS OF THREE ORAL ANALGESICS ON POSTOPERATIVE PAIN FOLLOWING ROOT CANAL PREPARATION: A CONTROLLED CLINICAL TRIAL
par: Shahid Islam, et autres
Publié: (2021) -
The new SUMPOT to predict postoperative complications using an Artificial Neural Network
par: Cosimo Chelazzi, et autres
Publié: (2021) -
Using Artificial Neural Network for Predicting and Evaluating Situation Awareness of Operator
par: Shengyuan Yan, et autres
Publié: (2021) -
Assessment of postoperative pain after single-visit root canal treatment using Wave One® and One Shape® single file system: A clinical study
par: Pooja Jain, et autres
Publié: (2021) -
Development and validation of an interpretable neural network for prediction of postoperative in-hospital mortality
par: Christine K. Lee, et autres
Publié: (2021)