Distribution and altitudinal patterns of carbon and nitrogen storage in various forest ecosystems in the central Yunnan Plateau, China
Abstract The carbon (C) pool in forest ecosystems plays a long-term and sustained role in mitigating the impacts of global warming, and the sequestration of C is closely linked to the nitrogen (N) cycle. Accurate estimates C and N storage (SC, SN) of forest can improve our understanding of C and N c...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7af2bca038ba4124a0eb4c23d825c73a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7af2bca038ba4124a0eb4c23d825c73a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7af2bca038ba4124a0eb4c23d825c73a2021-12-02T11:39:43ZDistribution and altitudinal patterns of carbon and nitrogen storage in various forest ecosystems in the central Yunnan Plateau, China10.1038/s41598-021-85710-82045-2322https://doaj.org/article/7af2bca038ba4124a0eb4c23d825c73a2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-85710-8https://doaj.org/toc/2045-2322Abstract The carbon (C) pool in forest ecosystems plays a long-term and sustained role in mitigating the impacts of global warming, and the sequestration of C is closely linked to the nitrogen (N) cycle. Accurate estimates C and N storage (SC, SN) of forest can improve our understanding of C and N cycles and help develop sustainable forest management policies in the content of climate change. In this study, the SC and SN of various forest ecosystems dominated respectively by Castanopsis carlesii and Lithocarpus mairei (EB), Pinus yunnanensis (PY), Pinus armandii (PA), Keteleeria evelyniana (KE), and Quercus semecarpifolia (QS) in the central Yunnan Plateau of China, were estimated on the basis of a field inventory to determine the distribution and altitudinal patterns of SC and SN among various forest ecosystems. The results showed that (1) the forest SC ranged from 179.58 ± 20.57 t hm−1 in QS to 365.89 ± 35.03 t hm−1 in EB. Soil, living biomass and litter contributed an average of 64.73%, 31.72% and 2.86% to forest SC, respectively; (2) the forest SN ranged from 4.47 ± 0.94 t ha−1 in PY to 8.91 ± 1.83 t ha−1 in PA. Soil, plants and litter contributed an average of 86.88%, 10.27% and 2.85% to forest SN, respectively; (3) the forest SC and SN decreased apparently with increasing altitude. The result demonstrates that changes in forest types can strongly affect the forest SC and SN. This study provides baseline information for forestland managers regarding forest resource utilization and C management.Jianqiang LiQibo ChenZhuang LiBangxiao PengJianlong ZhangXuexia XingBinyang ZhaoDenghui SongNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jianqiang Li Qibo Chen Zhuang Li Bangxiao Peng Jianlong Zhang Xuexia Xing Binyang Zhao Denghui Song Distribution and altitudinal patterns of carbon and nitrogen storage in various forest ecosystems in the central Yunnan Plateau, China |
description |
Abstract The carbon (C) pool in forest ecosystems plays a long-term and sustained role in mitigating the impacts of global warming, and the sequestration of C is closely linked to the nitrogen (N) cycle. Accurate estimates C and N storage (SC, SN) of forest can improve our understanding of C and N cycles and help develop sustainable forest management policies in the content of climate change. In this study, the SC and SN of various forest ecosystems dominated respectively by Castanopsis carlesii and Lithocarpus mairei (EB), Pinus yunnanensis (PY), Pinus armandii (PA), Keteleeria evelyniana (KE), and Quercus semecarpifolia (QS) in the central Yunnan Plateau of China, were estimated on the basis of a field inventory to determine the distribution and altitudinal patterns of SC and SN among various forest ecosystems. The results showed that (1) the forest SC ranged from 179.58 ± 20.57 t hm−1 in QS to 365.89 ± 35.03 t hm−1 in EB. Soil, living biomass and litter contributed an average of 64.73%, 31.72% and 2.86% to forest SC, respectively; (2) the forest SN ranged from 4.47 ± 0.94 t ha−1 in PY to 8.91 ± 1.83 t ha−1 in PA. Soil, plants and litter contributed an average of 86.88%, 10.27% and 2.85% to forest SN, respectively; (3) the forest SC and SN decreased apparently with increasing altitude. The result demonstrates that changes in forest types can strongly affect the forest SC and SN. This study provides baseline information for forestland managers regarding forest resource utilization and C management. |
format |
article |
author |
Jianqiang Li Qibo Chen Zhuang Li Bangxiao Peng Jianlong Zhang Xuexia Xing Binyang Zhao Denghui Song |
author_facet |
Jianqiang Li Qibo Chen Zhuang Li Bangxiao Peng Jianlong Zhang Xuexia Xing Binyang Zhao Denghui Song |
author_sort |
Jianqiang Li |
title |
Distribution and altitudinal patterns of carbon and nitrogen storage in various forest ecosystems in the central Yunnan Plateau, China |
title_short |
Distribution and altitudinal patterns of carbon and nitrogen storage in various forest ecosystems in the central Yunnan Plateau, China |
title_full |
Distribution and altitudinal patterns of carbon and nitrogen storage in various forest ecosystems in the central Yunnan Plateau, China |
title_fullStr |
Distribution and altitudinal patterns of carbon and nitrogen storage in various forest ecosystems in the central Yunnan Plateau, China |
title_full_unstemmed |
Distribution and altitudinal patterns of carbon and nitrogen storage in various forest ecosystems in the central Yunnan Plateau, China |
title_sort |
distribution and altitudinal patterns of carbon and nitrogen storage in various forest ecosystems in the central yunnan plateau, china |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/7af2bca038ba4124a0eb4c23d825c73a |
work_keys_str_mv |
AT jianqiangli distributionandaltitudinalpatternsofcarbonandnitrogenstorageinvariousforestecosystemsinthecentralyunnanplateauchina AT qibochen distributionandaltitudinalpatternsofcarbonandnitrogenstorageinvariousforestecosystemsinthecentralyunnanplateauchina AT zhuangli distributionandaltitudinalpatternsofcarbonandnitrogenstorageinvariousforestecosystemsinthecentralyunnanplateauchina AT bangxiaopeng distributionandaltitudinalpatternsofcarbonandnitrogenstorageinvariousforestecosystemsinthecentralyunnanplateauchina AT jianlongzhang distributionandaltitudinalpatternsofcarbonandnitrogenstorageinvariousforestecosystemsinthecentralyunnanplateauchina AT xuexiaxing distributionandaltitudinalpatternsofcarbonandnitrogenstorageinvariousforestecosystemsinthecentralyunnanplateauchina AT binyangzhao distributionandaltitudinalpatternsofcarbonandnitrogenstorageinvariousforestecosystemsinthecentralyunnanplateauchina AT denghuisong distributionandaltitudinalpatternsofcarbonandnitrogenstorageinvariousforestecosystemsinthecentralyunnanplateauchina |
_version_ |
1718395708065710080 |