Fully degenerate Bell polynomials associated with degenerate Poisson random variables
Many mathematicians have studied degenerate versions of quite a few special polynomials and numbers since Carlitz’s work (Utilitas Math. 15 (1979), 51–88). Recently, Kim et al. studied the degenerate gamma random variables, discrete degenerate random variables and two-variable degenerate Bell polyno...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7b06038148cd4547a1a28ded946ce90e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7b06038148cd4547a1a28ded946ce90e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7b06038148cd4547a1a28ded946ce90e2021-12-05T14:10:52ZFully degenerate Bell polynomials associated with degenerate Poisson random variables2391-545510.1515/math-2021-0022https://doaj.org/article/7b06038148cd4547a1a28ded946ce90e2021-05-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0022https://doaj.org/toc/2391-5455Many mathematicians have studied degenerate versions of quite a few special polynomials and numbers since Carlitz’s work (Utilitas Math. 15 (1979), 51–88). Recently, Kim et al. studied the degenerate gamma random variables, discrete degenerate random variables and two-variable degenerate Bell polynomials associated with Poisson degenerate central moments, etc. This paper is divided into two parts. In the first part, we introduce a new type of degenerate Bell polynomials associated with degenerate Poisson random variables with parameter α>0\alpha \hspace{-0.15em}\gt \hspace{-0.15em}0, called the fully degenerate Bell polynomials. We derive some combinatorial identities for the fully degenerate Bell polynomials related to the nnth moment of the degenerate Poisson random variable, special numbers and polynomials. In the second part, we consider the fully degenerate Bell polynomials associated with degenerate Poisson random variables with two parameters α>0\alpha \gt 0 and β>0\beta \hspace{-0.15em}\gt \hspace{-0.15em}0, called the two-variable fully degenerate Bell polynomials. We show their connection with the degenerate Poisson central moments, special numbers and polynomials.Kim Hye KyungDe Gruyterarticlebell polynomials and numbersdegenerate bell polynomials and numberspoisson random variabledegenerate poisson random variablethe poisson degenerate central moments11b7311b8305a19MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 284-296 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
bell polynomials and numbers degenerate bell polynomials and numbers poisson random variable degenerate poisson random variable the poisson degenerate central moments 11b73 11b83 05a19 Mathematics QA1-939 |
spellingShingle |
bell polynomials and numbers degenerate bell polynomials and numbers poisson random variable degenerate poisson random variable the poisson degenerate central moments 11b73 11b83 05a19 Mathematics QA1-939 Kim Hye Kyung Fully degenerate Bell polynomials associated with degenerate Poisson random variables |
description |
Many mathematicians have studied degenerate versions of quite a few special polynomials and numbers since Carlitz’s work (Utilitas Math. 15 (1979), 51–88). Recently, Kim et al. studied the degenerate gamma random variables, discrete degenerate random variables and two-variable degenerate Bell polynomials associated with Poisson degenerate central moments, etc. This paper is divided into two parts. In the first part, we introduce a new type of degenerate Bell polynomials associated with degenerate Poisson random variables with parameter α>0\alpha \hspace{-0.15em}\gt \hspace{-0.15em}0, called the fully degenerate Bell polynomials. We derive some combinatorial identities for the fully degenerate Bell polynomials related to the nnth moment of the degenerate Poisson random variable, special numbers and polynomials. In the second part, we consider the fully degenerate Bell polynomials associated with degenerate Poisson random variables with two parameters α>0\alpha \gt 0 and β>0\beta \hspace{-0.15em}\gt \hspace{-0.15em}0, called the two-variable fully degenerate Bell polynomials. We show their connection with the degenerate Poisson central moments, special numbers and polynomials. |
format |
article |
author |
Kim Hye Kyung |
author_facet |
Kim Hye Kyung |
author_sort |
Kim Hye Kyung |
title |
Fully degenerate Bell polynomials associated with degenerate Poisson random variables |
title_short |
Fully degenerate Bell polynomials associated with degenerate Poisson random variables |
title_full |
Fully degenerate Bell polynomials associated with degenerate Poisson random variables |
title_fullStr |
Fully degenerate Bell polynomials associated with degenerate Poisson random variables |
title_full_unstemmed |
Fully degenerate Bell polynomials associated with degenerate Poisson random variables |
title_sort |
fully degenerate bell polynomials associated with degenerate poisson random variables |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/7b06038148cd4547a1a28ded946ce90e |
work_keys_str_mv |
AT kimhyekyung fullydegeneratebellpolynomialsassociatedwithdegeneratepoissonrandomvariables |
_version_ |
1718371648230391808 |