Fully degenerate Bell polynomials associated with degenerate Poisson random variables

Many mathematicians have studied degenerate versions of quite a few special polynomials and numbers since Carlitz’s work (Utilitas Math. 15 (1979), 51–88). Recently, Kim et al. studied the degenerate gamma random variables, discrete degenerate random variables and two-variable degenerate Bell polyno...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Kim Hye Kyung
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/7b06038148cd4547a1a28ded946ce90e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7b06038148cd4547a1a28ded946ce90e
record_format dspace
spelling oai:doaj.org-article:7b06038148cd4547a1a28ded946ce90e2021-12-05T14:10:52ZFully degenerate Bell polynomials associated with degenerate Poisson random variables2391-545510.1515/math-2021-0022https://doaj.org/article/7b06038148cd4547a1a28ded946ce90e2021-05-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0022https://doaj.org/toc/2391-5455Many mathematicians have studied degenerate versions of quite a few special polynomials and numbers since Carlitz’s work (Utilitas Math. 15 (1979), 51–88). Recently, Kim et al. studied the degenerate gamma random variables, discrete degenerate random variables and two-variable degenerate Bell polynomials associated with Poisson degenerate central moments, etc. This paper is divided into two parts. In the first part, we introduce a new type of degenerate Bell polynomials associated with degenerate Poisson random variables with parameter α>0\alpha \hspace{-0.15em}\gt \hspace{-0.15em}0, called the fully degenerate Bell polynomials. We derive some combinatorial identities for the fully degenerate Bell polynomials related to the nnth moment of the degenerate Poisson random variable, special numbers and polynomials. In the second part, we consider the fully degenerate Bell polynomials associated with degenerate Poisson random variables with two parameters α>0\alpha \gt 0 and β>0\beta \hspace{-0.15em}\gt \hspace{-0.15em}0, called the two-variable fully degenerate Bell polynomials. We show their connection with the degenerate Poisson central moments, special numbers and polynomials.Kim Hye KyungDe Gruyterarticlebell polynomials and numbersdegenerate bell polynomials and numberspoisson random variabledegenerate poisson random variablethe poisson degenerate central moments11b7311b8305a19MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 284-296 (2021)
institution DOAJ
collection DOAJ
language EN
topic bell polynomials and numbers
degenerate bell polynomials and numbers
poisson random variable
degenerate poisson random variable
the poisson degenerate central moments
11b73
11b83
05a19
Mathematics
QA1-939
spellingShingle bell polynomials and numbers
degenerate bell polynomials and numbers
poisson random variable
degenerate poisson random variable
the poisson degenerate central moments
11b73
11b83
05a19
Mathematics
QA1-939
Kim Hye Kyung
Fully degenerate Bell polynomials associated with degenerate Poisson random variables
description Many mathematicians have studied degenerate versions of quite a few special polynomials and numbers since Carlitz’s work (Utilitas Math. 15 (1979), 51–88). Recently, Kim et al. studied the degenerate gamma random variables, discrete degenerate random variables and two-variable degenerate Bell polynomials associated with Poisson degenerate central moments, etc. This paper is divided into two parts. In the first part, we introduce a new type of degenerate Bell polynomials associated with degenerate Poisson random variables with parameter α>0\alpha \hspace{-0.15em}\gt \hspace{-0.15em}0, called the fully degenerate Bell polynomials. We derive some combinatorial identities for the fully degenerate Bell polynomials related to the nnth moment of the degenerate Poisson random variable, special numbers and polynomials. In the second part, we consider the fully degenerate Bell polynomials associated with degenerate Poisson random variables with two parameters α>0\alpha \gt 0 and β>0\beta \hspace{-0.15em}\gt \hspace{-0.15em}0, called the two-variable fully degenerate Bell polynomials. We show their connection with the degenerate Poisson central moments, special numbers and polynomials.
format article
author Kim Hye Kyung
author_facet Kim Hye Kyung
author_sort Kim Hye Kyung
title Fully degenerate Bell polynomials associated with degenerate Poisson random variables
title_short Fully degenerate Bell polynomials associated with degenerate Poisson random variables
title_full Fully degenerate Bell polynomials associated with degenerate Poisson random variables
title_fullStr Fully degenerate Bell polynomials associated with degenerate Poisson random variables
title_full_unstemmed Fully degenerate Bell polynomials associated with degenerate Poisson random variables
title_sort fully degenerate bell polynomials associated with degenerate poisson random variables
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/7b06038148cd4547a1a28ded946ce90e
work_keys_str_mv AT kimhyekyung fullydegeneratebellpolynomialsassociatedwithdegeneratepoissonrandomvariables
_version_ 1718371648230391808