Fully degenerate Bell polynomials associated with degenerate Poisson random variables
Many mathematicians have studied degenerate versions of quite a few special polynomials and numbers since Carlitz’s work (Utilitas Math. 15 (1979), 51–88). Recently, Kim et al. studied the degenerate gamma random variables, discrete degenerate random variables and two-variable degenerate Bell polyno...
Guardado en:
Autor principal: | Kim Hye Kyung |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7b06038148cd4547a1a28ded946ce90e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Several explicit formulas for (degenerate) Narumi and Cauchy polynomials and numbers
por: Qi Feng, et al.
Publicado: (2021) -
Poly-central factorial sequences and poly-central-Bell polynomials
por: Hye Kyung Kim, et al.
Publicado: (2021) -
Comparison of Generalized and Multilevel Poisson Regression Model with Poisson Model in Fertility Data in Rural of Fars Province (Iran)
por: N Zare,, et al.
Publicado: (2010) -
On the three families of extended Laguerre-based Apostol-type polynomials
por: Pathan,M. A., et al.
Publicado: (2021) -
A formula relating Bell polynomials and Stirling numbers of the first kind
por: Mark Shattuck
Publicado: (2021)