A Query Expansion Method Using Multinomial Naive Bayes

Information retrieval (IR) aims to obtain relevant information according to a certain user need and involves a great diversity of data such as texts, images, or videos. Query expansion techniques, as part of information retrieval (IR), are used to obtain more items, particularly documents, that are...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sergio Silva, Adrián Seara Vieira, Pedro Celard, Eva Lorenzo Iglesias, Lourdes Borrajo
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/7b08ed33fcc34dd4a6151ea458b11ac3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7b08ed33fcc34dd4a6151ea458b11ac3
record_format dspace
spelling oai:doaj.org-article:7b08ed33fcc34dd4a6151ea458b11ac32021-11-11T15:19:03ZA Query Expansion Method Using Multinomial Naive Bayes10.3390/app1121102842076-3417https://doaj.org/article/7b08ed33fcc34dd4a6151ea458b11ac32021-11-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/21/10284https://doaj.org/toc/2076-3417Information retrieval (IR) aims to obtain relevant information according to a certain user need and involves a great diversity of data such as texts, images, or videos. Query expansion techniques, as part of information retrieval (IR), are used to obtain more items, particularly documents, that are relevant to the user requirements. The user initial query is reformulated, adding meaningful terms with similar significance. In this study, a supervised query expansion technique based on an innovative use of the Multinomial Naive Bayes to extract relevant terms from the first documents retrieved by the initial query is presented. The proposed method was evaluated using MAP and R-prec on the first 5, 10, 15, and 100 retrieved documents. The improved performance of the expanded queries increased the number of relevant retrieved documents in comparison to the baseline method. We achieved more accurate document retrieval results (MAP 0.335, R-prec 0.369, P5 0.579, P10 0.469, P15 0.393, P100 0.175) as compared to the top performers in TREC2017 Precision Medicine Track.Sergio SilvaAdrián Seara VieiraPedro CelardEva Lorenzo IglesiasLourdes BorrajoMDPI AGarticlequery expansioninformation retrievalmultinomial naive bayesrelevance feedbackTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 10284, p 10284 (2021)
institution DOAJ
collection DOAJ
language EN
topic query expansion
information retrieval
multinomial naive bayes
relevance feedback
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
spellingShingle query expansion
information retrieval
multinomial naive bayes
relevance feedback
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
Sergio Silva
Adrián Seara Vieira
Pedro Celard
Eva Lorenzo Iglesias
Lourdes Borrajo
A Query Expansion Method Using Multinomial Naive Bayes
description Information retrieval (IR) aims to obtain relevant information according to a certain user need and involves a great diversity of data such as texts, images, or videos. Query expansion techniques, as part of information retrieval (IR), are used to obtain more items, particularly documents, that are relevant to the user requirements. The user initial query is reformulated, adding meaningful terms with similar significance. In this study, a supervised query expansion technique based on an innovative use of the Multinomial Naive Bayes to extract relevant terms from the first documents retrieved by the initial query is presented. The proposed method was evaluated using MAP and R-prec on the first 5, 10, 15, and 100 retrieved documents. The improved performance of the expanded queries increased the number of relevant retrieved documents in comparison to the baseline method. We achieved more accurate document retrieval results (MAP 0.335, R-prec 0.369, P5 0.579, P10 0.469, P15 0.393, P100 0.175) as compared to the top performers in TREC2017 Precision Medicine Track.
format article
author Sergio Silva
Adrián Seara Vieira
Pedro Celard
Eva Lorenzo Iglesias
Lourdes Borrajo
author_facet Sergio Silva
Adrián Seara Vieira
Pedro Celard
Eva Lorenzo Iglesias
Lourdes Borrajo
author_sort Sergio Silva
title A Query Expansion Method Using Multinomial Naive Bayes
title_short A Query Expansion Method Using Multinomial Naive Bayes
title_full A Query Expansion Method Using Multinomial Naive Bayes
title_fullStr A Query Expansion Method Using Multinomial Naive Bayes
title_full_unstemmed A Query Expansion Method Using Multinomial Naive Bayes
title_sort query expansion method using multinomial naive bayes
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/7b08ed33fcc34dd4a6151ea458b11ac3
work_keys_str_mv AT sergiosilva aqueryexpansionmethodusingmultinomialnaivebayes
AT adriansearavieira aqueryexpansionmethodusingmultinomialnaivebayes
AT pedrocelard aqueryexpansionmethodusingmultinomialnaivebayes
AT evalorenzoiglesias aqueryexpansionmethodusingmultinomialnaivebayes
AT lourdesborrajo aqueryexpansionmethodusingmultinomialnaivebayes
AT sergiosilva queryexpansionmethodusingmultinomialnaivebayes
AT adriansearavieira queryexpansionmethodusingmultinomialnaivebayes
AT pedrocelard queryexpansionmethodusingmultinomialnaivebayes
AT evalorenzoiglesias queryexpansionmethodusingmultinomialnaivebayes
AT lourdesborrajo queryexpansionmethodusingmultinomialnaivebayes
_version_ 1718435372896092160