Skin Lesion Classification Based on Surface Fractal Dimensions and Statistical Color Cluster Features Using an Ensemble of Machine Learning Techniques

(1) Background: An approach for skin cancer recognition and classification by implementation of a novel combination of features and two classifiers, as an auxiliary diagnostic method, is proposed. (2) Methods: The predictions are made by k-nearest neighbor with a 5-fold cross validation algorithm an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Simona Moldovanu, Felicia Anisoara Damian Michis, Keka C. Biswas, Anisia Culea-Florescu, Luminita Moraru
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/7b0ed21fc05d43cfa9992e87f89b22e3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7b0ed21fc05d43cfa9992e87f89b22e3
record_format dspace
spelling oai:doaj.org-article:7b0ed21fc05d43cfa9992e87f89b22e32021-11-11T15:26:30ZSkin Lesion Classification Based on Surface Fractal Dimensions and Statistical Color Cluster Features Using an Ensemble of Machine Learning Techniques10.3390/cancers132152562072-6694https://doaj.org/article/7b0ed21fc05d43cfa9992e87f89b22e32021-10-01T00:00:00Zhttps://www.mdpi.com/2072-6694/13/21/5256https://doaj.org/toc/2072-6694(1) Background: An approach for skin cancer recognition and classification by implementation of a novel combination of features and two classifiers, as an auxiliary diagnostic method, is proposed. (2) Methods: The predictions are made by k-nearest neighbor with a 5-fold cross validation algorithm and a neural network model to assist dermatologists in the diagnosis of cancerous skin lesions. As a main contribution, this work proposes a descriptor that combines skin surface fractal dimension and relevant color area features for skin lesion classification purposes. The surface fractal dimension is computed using a 2D generalization of Higuchi’s method. A clustering method allows for the selection of the relevant color distribution in skin lesion images by determining the average percentage of color areas within the nevi and melanoma lesion areas. In a classification stage, the Higuchi fractal dimensions (HFDs) and the color features are classified, separately, using a kNN-CV algorithm. In addition, these features are prototypes for a Radial basis function neural network (RBFNN) classifier. The efficiency of our algorithms was verified by utilizing images belonging to the 7-Point, Med-Node, and PH2 databases; (3) Results: Experimental results show that the accuracy of the proposed RBFNN model in skin cancer classification is 95.42% for 7-Point, 94.71% for Med-Node, and 94.88% for PH2, which are all significantly better than that of the kNN algorithm. (4) Conclusions: 2D Higuchi’s surface fractal features have not been previously used for skin lesion classification purpose. We used fractal features further correlated to color features to create a RBFNN classifier that provides high accuracies of classification.Simona MoldovanuFelicia Anisoara Damian MichisKeka C. BiswasAnisia Culea-FlorescuLuminita MoraruMDPI AGarticleskin cancer recognitionk-nearest neighborHiguchi fractal dimensionsRadial basis function neural networkNeoplasms. Tumors. Oncology. Including cancer and carcinogensRC254-282ENCancers, Vol 13, Iss 5256, p 5256 (2021)
institution DOAJ
collection DOAJ
language EN
topic skin cancer recognition
k-nearest neighbor
Higuchi fractal dimensions
Radial basis function neural network
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
spellingShingle skin cancer recognition
k-nearest neighbor
Higuchi fractal dimensions
Radial basis function neural network
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
Simona Moldovanu
Felicia Anisoara Damian Michis
Keka C. Biswas
Anisia Culea-Florescu
Luminita Moraru
Skin Lesion Classification Based on Surface Fractal Dimensions and Statistical Color Cluster Features Using an Ensemble of Machine Learning Techniques
description (1) Background: An approach for skin cancer recognition and classification by implementation of a novel combination of features and two classifiers, as an auxiliary diagnostic method, is proposed. (2) Methods: The predictions are made by k-nearest neighbor with a 5-fold cross validation algorithm and a neural network model to assist dermatologists in the diagnosis of cancerous skin lesions. As a main contribution, this work proposes a descriptor that combines skin surface fractal dimension and relevant color area features for skin lesion classification purposes. The surface fractal dimension is computed using a 2D generalization of Higuchi’s method. A clustering method allows for the selection of the relevant color distribution in skin lesion images by determining the average percentage of color areas within the nevi and melanoma lesion areas. In a classification stage, the Higuchi fractal dimensions (HFDs) and the color features are classified, separately, using a kNN-CV algorithm. In addition, these features are prototypes for a Radial basis function neural network (RBFNN) classifier. The efficiency of our algorithms was verified by utilizing images belonging to the 7-Point, Med-Node, and PH2 databases; (3) Results: Experimental results show that the accuracy of the proposed RBFNN model in skin cancer classification is 95.42% for 7-Point, 94.71% for Med-Node, and 94.88% for PH2, which are all significantly better than that of the kNN algorithm. (4) Conclusions: 2D Higuchi’s surface fractal features have not been previously used for skin lesion classification purpose. We used fractal features further correlated to color features to create a RBFNN classifier that provides high accuracies of classification.
format article
author Simona Moldovanu
Felicia Anisoara Damian Michis
Keka C. Biswas
Anisia Culea-Florescu
Luminita Moraru
author_facet Simona Moldovanu
Felicia Anisoara Damian Michis
Keka C. Biswas
Anisia Culea-Florescu
Luminita Moraru
author_sort Simona Moldovanu
title Skin Lesion Classification Based on Surface Fractal Dimensions and Statistical Color Cluster Features Using an Ensemble of Machine Learning Techniques
title_short Skin Lesion Classification Based on Surface Fractal Dimensions and Statistical Color Cluster Features Using an Ensemble of Machine Learning Techniques
title_full Skin Lesion Classification Based on Surface Fractal Dimensions and Statistical Color Cluster Features Using an Ensemble of Machine Learning Techniques
title_fullStr Skin Lesion Classification Based on Surface Fractal Dimensions and Statistical Color Cluster Features Using an Ensemble of Machine Learning Techniques
title_full_unstemmed Skin Lesion Classification Based on Surface Fractal Dimensions and Statistical Color Cluster Features Using an Ensemble of Machine Learning Techniques
title_sort skin lesion classification based on surface fractal dimensions and statistical color cluster features using an ensemble of machine learning techniques
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/7b0ed21fc05d43cfa9992e87f89b22e3
work_keys_str_mv AT simonamoldovanu skinlesionclassificationbasedonsurfacefractaldimensionsandstatisticalcolorclusterfeaturesusinganensembleofmachinelearningtechniques
AT feliciaanisoaradamianmichis skinlesionclassificationbasedonsurfacefractaldimensionsandstatisticalcolorclusterfeaturesusinganensembleofmachinelearningtechniques
AT kekacbiswas skinlesionclassificationbasedonsurfacefractaldimensionsandstatisticalcolorclusterfeaturesusinganensembleofmachinelearningtechniques
AT anisiaculeaflorescu skinlesionclassificationbasedonsurfacefractaldimensionsandstatisticalcolorclusterfeaturesusinganensembleofmachinelearningtechniques
AT luminitamoraru skinlesionclassificationbasedonsurfacefractaldimensionsandstatisticalcolorclusterfeaturesusinganensembleofmachinelearningtechniques
_version_ 1718435318691004416