Skin Lesion Classification Based on Surface Fractal Dimensions and Statistical Color Cluster Features Using an Ensemble of Machine Learning Techniques
(1) Background: An approach for skin cancer recognition and classification by implementation of a novel combination of features and two classifiers, as an auxiliary diagnostic method, is proposed. (2) Methods: The predictions are made by k-nearest neighbor with a 5-fold cross validation algorithm an...
Guardado en:
Autores principales: | Simona Moldovanu, Felicia Anisoara Damian Michis, Keka C. Biswas, Anisia Culea-Florescu, Luminita Moraru |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7b0ed21fc05d43cfa9992e87f89b22e3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Climate-Mathematical Clustering of Rainfall Stations in the Río Bravo-San Juan Basin (Mexico) by Using the Higuchi Fractal Dimension and the Hurst Exponent
por: Francisco Gerardo Benavides-Bravo, et al.
Publicado: (2021) -
K-Nearest Neighbor for Recognize Handwritten Arabic Character
por: Muhammad Athoillah
Publicado: (2019) -
Variation Trends of Fractal Dimension in Epileptic EEG Signals
por: Zhiwei Li, et al.
Publicado: (2021) -
KNN-SC: Novel Spectral Clustering Algorithm Using k-Nearest Neighbors
por: Jeong-Hun Kim, et al.
Publicado: (2021) -
Evidence of Fractality in a Pattern of Crystallization of Bovine Cervical Mucus Obtained at Oestrus
por: Cortés,Manuel E, et al.
Publicado: (2012)