Tomato detection based on modified YOLOv3 framework

Abstract Fruit detection forms a vital part of the robotic harvesting platform. However, uneven environment conditions, such as branch and leaf occlusion, illumination variation, clusters of tomatoes, shading, and so on, have made fruit detection very challenging. In order to solve these problems, a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Mubashiru Olarewaju Lawal
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/7b11b5841271447a86068d5cee23a7c9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Fruit detection forms a vital part of the robotic harvesting platform. However, uneven environment conditions, such as branch and leaf occlusion, illumination variation, clusters of tomatoes, shading, and so on, have made fruit detection very challenging. In order to solve these problems, a modified YOLOv3 model called YOLO-Tomato models were adopted to detect tomatoes in complex environmental conditions. With the application of label what you see approach, densely architecture incorporation, spatial pyramid pooling and Mish function activation to the modified YOLOv3 model, the YOLO-Tomato models: YOLO-Tomato-A at AP 98.3% with detection time 48 ms, YOLO-Tomato-B at AP 99.3% with detection time 44 ms, and YOLO-Tomato-C at AP 99.5% with detection time 52 ms, performed better than other state-of-the-art methods.