Closed-form solutions and conservation laws of a generalized Hirota–Satsuma coupled KdV system of fluid mechanics
In this article, a generalized Hirota–Satsuma coupled Korteweg–de Vries (KdV) system is investigated from the group standpoint. This system represents an interplay of long waves with distinct dispersion correlations. Using Lie’s theory several symmetry reductions are performed and the system is redu...
Guardado en:
Autor principal: | Khalique Chaudry Masood |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7b1d0080092d450b8e82fc80546fa7f9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On Soliton Solutions of Perturbed Boussinesq and KdV-Caudery-Dodd-Gibbon Equations
por: Muhammad Imran Asjad, et al.
Publicado: (2021) -
Comparison of modified ADM and classical finite difference method for some third-order and fifth-order KdV equations
por: Appadu Appanah Rao, et al.
Publicado: (2021) -
Existence and nonlinear stability of solitary wave solutions for coupled Schrodinger-KdV systems
por: Pengxue Cui, et al.
Publicado: (2021) -
Solving Schrödinger–Hirota Equation in a Stochastic Environment and Utilizing Generalized Derivatives of the Conformable Type
por: Abd-Allah Hyder, et al.
Publicado: (2021) -
A study on the (2+1)–dimensional first extended Calogero-Bogoyavlenskii- Schiff equation
por: Chaudry Masood Khalique, et al.
Publicado: (2021)