Parsimonious neural networks learn interpretable physical laws
Abstract Machine learning is playing an increasing role in the physical sciences and significant progress has been made towards embedding domain knowledge into models. Less explored is its use to discover interpretable physical laws from data. We propose parsimonious neural networks (PNNs) that comb...
Guardado en:
Autores principales: | Saaketh Desai, Alejandro Strachan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7b24e1e0a740421f8df33a3f6cfc3068 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neural network reactive force field for C, H, N, and O systems
por: Pilsun Yoo, et al.
Publicado: (2021) -
Near-surface real-time seismic imaging using parsimonious interferometry
por: Sherif M. Hanafy, et al.
Publicado: (2021) -
Using genes as characters and a parsimony analysis to explore the phylogenetic position of turtles.
por: Bin Lu, et al.
Publicado: (2013) -
Rec-DCM-Eigen: reconstructing a less parsimonious but more accurate tree in shorter time.
por: Seunghwa Kang, et al.
Publicado: (2011) -
Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality
por: Rama K. Vasudevan, et al.
Publicado: (2021)