Energy-participation quantization of Josephson circuits

Abstract Superconducting microwave circuits incorporating nonlinear devices, such as Josephson junctions, are a leading platform for emerging quantum technologies. Increasing circuit complexity further requires efficient methods for the calculation and optimization of the spectrum, nonlinear interac...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zlatko K. Minev, Zaki Leghtas, Shantanu O. Mundhada, Lysander Christakis, Ioan M. Pop, Michel H. Devoret
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/7b2d97b2b478467f95c4b18d78333946
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7b2d97b2b478467f95c4b18d78333946
record_format dspace
spelling oai:doaj.org-article:7b2d97b2b478467f95c4b18d783339462021-12-02T16:35:05ZEnergy-participation quantization of Josephson circuits10.1038/s41534-021-00461-82056-6387https://doaj.org/article/7b2d97b2b478467f95c4b18d783339462021-08-01T00:00:00Zhttps://doi.org/10.1038/s41534-021-00461-8https://doaj.org/toc/2056-6387Abstract Superconducting microwave circuits incorporating nonlinear devices, such as Josephson junctions, are a leading platform for emerging quantum technologies. Increasing circuit complexity further requires efficient methods for the calculation and optimization of the spectrum, nonlinear interactions, and dissipation in multi-mode distributed quantum circuits. Here we present a method based on the energy-participation ratio (EPR) of a dissipative or nonlinear element in an electromagnetic mode. The EPR, a number between zero and one, quantifies how much of the mode energy is stored in each element. The EPRs obey universal constraints and are calculated from one electromagnetic-eigenmode simulation. They lead directly to the system quantum Hamiltonian and dissipative parameters. The method provides an intuitive and simple-to-use tool to quantize multi-junction circuits. We experimentally tested this method on a variety of Josephson circuits and demonstrated agreement within several percents for nonlinear couplings and modal Hamiltonian parameters, spanning five orders of magnitude in energy, across a dozen samples.Zlatko K. MinevZaki LeghtasShantanu O. MundhadaLysander ChristakisIoan M. PopMichel H. DevoretNature PortfolioarticlePhysicsQC1-999Electronic computers. Computer scienceQA75.5-76.95ENnpj Quantum Information, Vol 7, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
spellingShingle Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
Zlatko K. Minev
Zaki Leghtas
Shantanu O. Mundhada
Lysander Christakis
Ioan M. Pop
Michel H. Devoret
Energy-participation quantization of Josephson circuits
description Abstract Superconducting microwave circuits incorporating nonlinear devices, such as Josephson junctions, are a leading platform for emerging quantum technologies. Increasing circuit complexity further requires efficient methods for the calculation and optimization of the spectrum, nonlinear interactions, and dissipation in multi-mode distributed quantum circuits. Here we present a method based on the energy-participation ratio (EPR) of a dissipative or nonlinear element in an electromagnetic mode. The EPR, a number between zero and one, quantifies how much of the mode energy is stored in each element. The EPRs obey universal constraints and are calculated from one electromagnetic-eigenmode simulation. They lead directly to the system quantum Hamiltonian and dissipative parameters. The method provides an intuitive and simple-to-use tool to quantize multi-junction circuits. We experimentally tested this method on a variety of Josephson circuits and demonstrated agreement within several percents for nonlinear couplings and modal Hamiltonian parameters, spanning five orders of magnitude in energy, across a dozen samples.
format article
author Zlatko K. Minev
Zaki Leghtas
Shantanu O. Mundhada
Lysander Christakis
Ioan M. Pop
Michel H. Devoret
author_facet Zlatko K. Minev
Zaki Leghtas
Shantanu O. Mundhada
Lysander Christakis
Ioan M. Pop
Michel H. Devoret
author_sort Zlatko K. Minev
title Energy-participation quantization of Josephson circuits
title_short Energy-participation quantization of Josephson circuits
title_full Energy-participation quantization of Josephson circuits
title_fullStr Energy-participation quantization of Josephson circuits
title_full_unstemmed Energy-participation quantization of Josephson circuits
title_sort energy-participation quantization of josephson circuits
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/7b2d97b2b478467f95c4b18d78333946
work_keys_str_mv AT zlatkokminev energyparticipationquantizationofjosephsoncircuits
AT zakileghtas energyparticipationquantizationofjosephsoncircuits
AT shantanuomundhada energyparticipationquantizationofjosephsoncircuits
AT lysanderchristakis energyparticipationquantizationofjosephsoncircuits
AT ioanmpop energyparticipationquantizationofjosephsoncircuits
AT michelhdevoret energyparticipationquantizationofjosephsoncircuits
_version_ 1718383763558236160