Extrapolative Bayesian Optimization with Gaussian Process and Neural Network Ensemble Surrogate Models
Bayesian optimization (BO) has emerged as the algorithm of choice for guiding the selection of experimental parameters in automated active learning driven high throughput experiments in materials science and chemistry. Previous studies suggest that optimization performance of the typical surrogate m...
Guardado en:
Autores principales: | Yee-Fun Lim, Chee Koon Ng, U.S. Vaitesswar, Kedar Hippalgaonkar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7b396f6d97e843f0b445409a937ba3a1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Large‐Scale Surface Shape Sensing with Learning‐Based Computational Mechanics
por: Kui Wang, et al.
Publicado: (2021) -
Active Learning in Bayesian Neural Networks for Bandgap Predictions of Novel Van der Waals Heterostructures
por: Marco Fronzi, et al.
Publicado: (2021) -
Communication constrained robust guidance strategy using quantized artificial time delay based control with input saturation
por: Arunava Banerjee, et al.
Publicado: (2021) -
Decentralized event‐triggered robust MPC for large‐scale networked Lipchitz non‐linear control systems
por: Saeid GHorbani, et al.
Publicado: (2021) -
Guaranteed‐performance consensus tracking for one‐sided Lipschitz non‐linear multi‐agent systems with switching communication topologies
por: Wanzhen Quan, et al.
Publicado: (2021)