Extrapolative Bayesian Optimization with Gaussian Process and Neural Network Ensemble Surrogate Models
Bayesian optimization (BO) has emerged as the algorithm of choice for guiding the selection of experimental parameters in automated active learning driven high throughput experiments in materials science and chemistry. Previous studies suggest that optimization performance of the typical surrogate m...
Enregistré dans:
Auteurs principaux: | Yee-Fun Lim, Chee Koon Ng, U.S. Vaitesswar, Kedar Hippalgaonkar |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7b396f6d97e843f0b445409a937ba3a1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Large‐Scale Surface Shape Sensing with Learning‐Based Computational Mechanics
par: Kui Wang, et autres
Publié: (2021) -
Active Learning in Bayesian Neural Networks for Bandgap Predictions of Novel Van der Waals Heterostructures
par: Marco Fronzi, et autres
Publié: (2021) -
Communication constrained robust guidance strategy using quantized artificial time delay based control with input saturation
par: Arunava Banerjee, et autres
Publié: (2021) -
Decentralized event‐triggered robust MPC for large‐scale networked Lipchitz non‐linear control systems
par: Saeid GHorbani, et autres
Publié: (2021) -
Guaranteed‐performance consensus tracking for one‐sided Lipschitz non‐linear multi‐agent systems with switching communication topologies
par: Wanzhen Quan, et autres
Publié: (2021)