Extrapolative Bayesian Optimization with Gaussian Process and Neural Network Ensemble Surrogate Models

Bayesian optimization (BO) has emerged as the algorithm of choice for guiding the selection of experimental parameters in automated active learning driven high throughput experiments in materials science and chemistry. Previous studies suggest that optimization performance of the typical surrogate m...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Yee-Fun Lim, Chee Koon Ng, U.S. Vaitesswar, Kedar Hippalgaonkar
Format: article
Langue:EN
Publié: Wiley 2021
Sujets:
Accès en ligne:https://doaj.org/article/7b396f6d97e843f0b445409a937ba3a1
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

Documents similaires