Objective and bias-free measures of candidate motivation during job applications
Abstract Society suffers from biases and discrimination, a longstanding dilemma that stems from ungrounded, subjective judgments. Especially unequal opportunities in labor remain a persistent challenge, despite the recent inauguration of top-down diplomatic measures. Here we propose a solution by us...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7b3ae15bfbce4308b5db649d49b7a793 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Society suffers from biases and discrimination, a longstanding dilemma that stems from ungrounded, subjective judgments. Especially unequal opportunities in labor remain a persistent challenge, despite the recent inauguration of top-down diplomatic measures. Here we propose a solution by using an objective approach to the measurement of nonverbal behaviors of job candidates that trained for a job assessment. First, we implemented and developed artificial intelligence, computer vision, and unbiased machine learning software to automatically detect facial muscle activity and emotional expressions to predict the candidates’ self-reported motivation levels. The motivation judgments by our model outperformed recruiters’ unreliable, invalid, and sometimes biased judgments. These findings mark the necessity and usefulness of novel, bias-free, and scientific approaches to candidate and employee screening and selection procedures in recruitment and human resources. |
---|