Scattering-Keypoint-Guided Network for Oriented Ship Detection in High-Resolution and Large-Scale SAR Images
Ship detection in synthetic aperture radar (SAR) images is a significant and challenging task. Recently, deep convolutional neural networks have been applied to solve the detection problem and made a great breakthrough. Previous works mostly rely on the manually designed anchor boxes to search for t...
Enregistré dans:
Auteurs principaux: | Kun Fu, Jiamei Fu, Zhirui Wang, Xian Sun |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7b60d98163dd47e4b1214bbd1ca6a2f9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Anchor-Free SAR Ship Instance Segmentation With Centroid-Distance Based Loss
par: Fei Gao, et autres
Publié: (2021) -
Efficient Generation of Artificial Training DB for Ship Detection Using Satellite SAR Images
par: Seung-Jae Lee, et autres
Publié: (2021) -
Improved Accuracy of Velocity Estimation for Cruising Ships by Temporal Differences Between Two Extreme Sublook Images of ALOS-2 Spotlight SAR Images With Long Integration Times
par: Takero Yoshida, et autres
Publié: (2021) -
A Two-Scale Method of Sea Ice Classification Using TerraSAR-X ScanSAR Data During Early Freeze-Up
par: Huiying Liu, et autres
Publié: (2021) -
Towards Operational Flood Monitoring in Flanders Using Sentinel-1
par: Lisa Landuyt, et autres
Publié: (2021)