Deep action learning enables robust 3D segmentation of body organs in various CT and MRI images
Abstract In this study, we propose a novel point cloud based 3D registration and segmentation framework using reinforcement learning. An artificial agent, implemented as a distinct actor based on value networks, is trained to predict the optimal piece-wise linear transformation of a point cloud for...
Guardado en:
Autores principales: | Xia Zhong, Mario Amrehn, Nishant Ravikumar, Shuqing Chen, Norbert Strobel, Annette Birkhold, Markus Kowarschik, Rebecca Fahrig, Andreas Maier |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7b70a3b7650e4ff28f63408369c0ddec |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A deep learning method for automatic segmentation of the bony orbit in MRI and CT images
por: Jared Hamwood, et al.
Publicado: (2021) -
Automatic segmentation with detection of local segmentation failures in cardiac MRI
por: Jörg Sander, et al.
Publicado: (2020) -
Role of CT and MRI in Evaluation of Adolescent Painful Scoliosis
por: Esam Hemat, et al.
Publicado: (2014) -
Radiomics feature robustness as measured using an MRI phantom
por: Joonsang Lee, et al.
Publicado: (2021) -
Robustness of PET Radiomics Features: Impact of Co-Registration with MRI
por: Alessandro Stefano, et al.
Publicado: (2021)