Search-and-Attack: Temporally Sparse Adversarial Perturbations on Videos
Modern neural networks are known to be vulnerable to adversarial attacks in various domains. Although most attack methods usually densely change the input values, recent works have shown that deep neural networks (DNNs) are also vulnerable to sparse perturbations. Spatially sparse attacks on images...
Guardado en:
Autores principales: | Hwan Heo, Dohwan Ko, Jaewon Lee, Youngjoon Hong, Hyunwoo J. Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7b93adf29cfb4975b70c64124a8cca42 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
Advances in Adversarial Attacks and Defenses in Computer Vision: A Survey
por: Naveed Akhtar, et al.
Publicado: (2021) -
Adversarial attacks on deep learning models in smart grids
por: Jingbo Hao, et al.
Publicado: (2022) -
Detect Adversarial Attacks Against Deep Neural Networks With GPU Monitoring
por: Tommaso Zoppi, et al.
Publicado: (2021) -
Textual Adversarial Attacking with Limited Queries
por: Yu Zhang, et al.
Publicado: (2021)