Search-and-Attack: Temporally Sparse Adversarial Perturbations on Videos
Modern neural networks are known to be vulnerable to adversarial attacks in various domains. Although most attack methods usually densely change the input values, recent works have shown that deep neural networks (DNNs) are also vulnerable to sparse perturbations. Spatially sparse attacks on images...
Enregistré dans:
| Auteurs principaux: | Hwan Heo, Dohwan Ko, Jaewon Lee, Youngjoon Hong, Hyunwoo J. Kim |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
IEEE
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/7b93adf29cfb4975b70c64124a8cca42 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
par: Chuan Du, et autres
Publié: (2021) -
Advances in Adversarial Attacks and Defenses in Computer Vision: A Survey
par: Naveed Akhtar, et autres
Publié: (2021) -
Adversarial attacks on deep learning models in smart grids
par: Jingbo Hao, et autres
Publié: (2022) -
Detect Adversarial Attacks Against Deep Neural Networks With GPU Monitoring
par: Tommaso Zoppi, et autres
Publié: (2021) -
Textual Adversarial Attacking with Limited Queries
par: Yu Zhang, et autres
Publié: (2021)