Operating state prediction for wind turbine generator bearing based on ULSSVM and QPSO
Aiming at the problem of operating state prediction of generator bearing, a prediction method based on quantum particle swarm optimization (QPSO) and united least squares support vector machine (ULSSVM) is proposed. Firstly, the time least squares support vector machine (TLSSVM) model is established...
Guardado en:
Autores principales: | Xiaojiao Gu, Xiaoying Ma |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
JVE International
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7ba122ef75904ba39ec18365c8056219 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ENHANCEMENT SPECTRAL RESOLUTION FOR THE PREDICTION AMOUNT OF SOFOSBUVIR AND LEDIPASVIR USING LEAST SQUARES SUPPORT VECTOR MACHINE AND ARTIFICIAL NEURAL NETWORKS IN PHARMACEUTICAL FORMULATION
por: Safakhoo,Negin, et al.
Publicado: (2019) -
Hybrid connectionist model determines CO2–oil swelling factor
por: Mohammad Ali Ahmadi, et al.
Publicado: (2018) -
Use of VIS-NIRS for land management classification with a support vector machine and prediction of soil organic carbon and other soil properties
por: Debaene,Guillaume, et al.
Publicado: (2014) -
Geospatial Least Squares Support Vector Regression Fused with Spatial Weight Matrix
por: Haiqi Wang, et al.
Publicado: (2021) -
Short-Term Photovoltaic Power Interval Prediction Based on the Improved Generalized Error Mixture Distribution and Wavelet Packet -LSSVM
por: Mao Yang, et al.
Publicado: (2021)