Boosting and lassoing new prostate cancer SNP risk factors and their connection to selenium
Abstract We begin by arguing that the often used algorithm for the discovery and use of disease risk factors, stepwise logistic regression, is unstable. We then argue that there are other algorithms available that are much more stable and reliable (e.g. the lasso and gradient boosting). We then prop...
Enregistré dans:
Auteurs principaux: | David E. Booth, Venugopal Gopalakrishna-Remani, Matthew L. Cooper, Fiona R. Green, Margaret P. Rayman |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7ba5a9efd9e749778f882d2f6860e03c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
KLK3 SNP–SNP interactions for prediction of prostate cancer aggressiveness
par: Hui-Yi Lin, et autres
Publié: (2021) -
Functional Connectivity During Visuospatial Processing in Schizophrenia: A Classification Study Using Lasso Regression
par: Potvin S, et autres
Publié: (2021) -
Lasso Proteins—Unifying Cysteine Knots and Miniproteins
par: Bartosz Ambroży Greń, et autres
Publié: (2021) -
Polymorphisms in thioredoxin reductase and selenoprotein K genes and selenium status modulate risk of prostate cancer.
par: Catherine Méplan, et autres
Publié: (2012) -
Pruning Filters Base on Extending Filter Group Lasso
par: Zhihong Xie, et autres
Publié: (2020)