(1)H NMR-based metabolite profiling of planktonic and biofilm cells in Acinetobacter baumannii 1656-2.
Acinetobacter baumannii is an aerobic and gram-negative pathogenic bacterium that is resistant to most antibiotics. Recently, A. baumannii 1656-2 exhibited the ability to form biofilms under clinical conditions. In this study, global metabolite profiling of both planktonic and biofilm forms of A. ba...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7bb265f02d9448249518bec99cfa4c43 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Acinetobacter baumannii is an aerobic and gram-negative pathogenic bacterium that is resistant to most antibiotics. Recently, A. baumannii 1656-2 exhibited the ability to form biofilms under clinical conditions. In this study, global metabolite profiling of both planktonic and biofilm forms of A. baumannii 1656-2 was performed using high-resolution nuclear magnetic resonance (NMR) spectroscopy and multivariate statistical analysis to investigate the metabolic patterns leading to biofilm formation. Principal components analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots showed a distinct separation between planktonic and biofilm cells. Metabolites including acetates, pyruvate, succinate, UDP-glucose, AMP, glutamate, and lysine were increasingly involved in the energy metabolism of biofilm formation. In particular, the ratio of N-acetyl-D-glucosamine (GlcNAc) to D-glucosamine (GlcNH2) was significantly higher during biofilm formation than under the planktonic condition. This study demonstrates that NMR-based global metabolite profiling of bacterial cells can provide valuable insight into the metabolic changes in multidrug resistant and biofilm-forming bacteria such as A. baumannii 1656-2. |
---|