Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces

We establish trace theorems for function spaces defined on general Ahlfors regular metric spaces Z. The results cover the Triebel-Lizorkin spaces and the Besov spaces for smoothness indices s < 1, as well as the first order Hajłasz-Sobolev space M1,p(Z). They generalize the classical results from...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Saksman Eero, Soto Tomás
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2017
Materias:
Acceso en línea:https://doaj.org/article/7bbe4aace215422695e93a81069214c4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7bbe4aace215422695e93a81069214c4
record_format dspace
spelling oai:doaj.org-article:7bbe4aace215422695e93a81069214c42021-12-05T14:10:38ZTraces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces2299-327410.1515/agms-2017-0006https://doaj.org/article/7bbe4aace215422695e93a81069214c42017-12-01T00:00:00Zhttps://doi.org/10.1515/agms-2017-0006https://doaj.org/toc/2299-3274We establish trace theorems for function spaces defined on general Ahlfors regular metric spaces Z. The results cover the Triebel-Lizorkin spaces and the Besov spaces for smoothness indices s < 1, as well as the first order Hajłasz-Sobolev space M1,p(Z). They generalize the classical results from the Euclidean setting, since the traces of these function spaces onto any closed Ahlfors regular subset F ⊂ Z are Besov spaces defined intrinsically on F. Our method employs the definitions of the function spaces via hyperbolic fillings of the underlying metric space.Saksman EeroSoto TomásDe Gruyterarticletrace theoremssobolev spacesbesov spacestriebel-lizorkin spaceshyperbolic fillingprimary: 46e3542b35AnalysisQA299.6-433ENAnalysis and Geometry in Metric Spaces, Vol 5, Iss 1, Pp 98-115 (2017)
institution DOAJ
collection DOAJ
language EN
topic trace theorems
sobolev spaces
besov spaces
triebel-lizorkin spaces
hyperbolic filling
primary: 46e35
42b35
Analysis
QA299.6-433
spellingShingle trace theorems
sobolev spaces
besov spaces
triebel-lizorkin spaces
hyperbolic filling
primary: 46e35
42b35
Analysis
QA299.6-433
Saksman Eero
Soto Tomás
Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
description We establish trace theorems for function spaces defined on general Ahlfors regular metric spaces Z. The results cover the Triebel-Lizorkin spaces and the Besov spaces for smoothness indices s < 1, as well as the first order Hajłasz-Sobolev space M1,p(Z). They generalize the classical results from the Euclidean setting, since the traces of these function spaces onto any closed Ahlfors regular subset F ⊂ Z are Besov spaces defined intrinsically on F. Our method employs the definitions of the function spaces via hyperbolic fillings of the underlying metric space.
format article
author Saksman Eero
Soto Tomás
author_facet Saksman Eero
Soto Tomás
author_sort Saksman Eero
title Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
title_short Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
title_full Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
title_fullStr Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
title_full_unstemmed Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
title_sort traces of besov, triebel-lizorkin and sobolev spaces on metric spaces
publisher De Gruyter
publishDate 2017
url https://doaj.org/article/7bbe4aace215422695e93a81069214c4
work_keys_str_mv AT saksmaneero tracesofbesovtriebellizorkinandsobolevspacesonmetricspaces
AT sototomas tracesofbesovtriebellizorkinandsobolevspacesonmetricspaces
_version_ 1718371846870532096