Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
We establish trace theorems for function spaces defined on general Ahlfors regular metric spaces Z. The results cover the Triebel-Lizorkin spaces and the Besov spaces for smoothness indices s < 1, as well as the first order Hajłasz-Sobolev space M1,p(Z). They generalize the classical results from...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7bbe4aace215422695e93a81069214c4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7bbe4aace215422695e93a81069214c4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7bbe4aace215422695e93a81069214c42021-12-05T14:10:38ZTraces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces2299-327410.1515/agms-2017-0006https://doaj.org/article/7bbe4aace215422695e93a81069214c42017-12-01T00:00:00Zhttps://doi.org/10.1515/agms-2017-0006https://doaj.org/toc/2299-3274We establish trace theorems for function spaces defined on general Ahlfors regular metric spaces Z. The results cover the Triebel-Lizorkin spaces and the Besov spaces for smoothness indices s < 1, as well as the first order Hajłasz-Sobolev space M1,p(Z). They generalize the classical results from the Euclidean setting, since the traces of these function spaces onto any closed Ahlfors regular subset F ⊂ Z are Besov spaces defined intrinsically on F. Our method employs the definitions of the function spaces via hyperbolic fillings of the underlying metric space.Saksman EeroSoto TomásDe Gruyterarticletrace theoremssobolev spacesbesov spacestriebel-lizorkin spaceshyperbolic fillingprimary: 46e3542b35AnalysisQA299.6-433ENAnalysis and Geometry in Metric Spaces, Vol 5, Iss 1, Pp 98-115 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
trace theorems sobolev spaces besov spaces triebel-lizorkin spaces hyperbolic filling primary: 46e35 42b35 Analysis QA299.6-433 |
spellingShingle |
trace theorems sobolev spaces besov spaces triebel-lizorkin spaces hyperbolic filling primary: 46e35 42b35 Analysis QA299.6-433 Saksman Eero Soto Tomás Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces |
description |
We establish trace theorems for function spaces defined on general Ahlfors regular metric spaces Z. The results cover the Triebel-Lizorkin spaces and the Besov spaces for smoothness indices s < 1, as well as the first order Hajłasz-Sobolev space M1,p(Z). They generalize the classical results from the Euclidean setting, since the traces of these function spaces onto any closed Ahlfors regular subset F ⊂ Z are Besov spaces defined intrinsically on F. Our method employs the definitions of the function spaces via hyperbolic fillings of the underlying metric space. |
format |
article |
author |
Saksman Eero Soto Tomás |
author_facet |
Saksman Eero Soto Tomás |
author_sort |
Saksman Eero |
title |
Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces |
title_short |
Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces |
title_full |
Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces |
title_fullStr |
Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces |
title_full_unstemmed |
Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces |
title_sort |
traces of besov, triebel-lizorkin and sobolev spaces on metric spaces |
publisher |
De Gruyter |
publishDate |
2017 |
url |
https://doaj.org/article/7bbe4aace215422695e93a81069214c4 |
work_keys_str_mv |
AT saksmaneero tracesofbesovtriebellizorkinandsobolevspacesonmetricspaces AT sototomas tracesofbesovtriebellizorkinandsobolevspacesonmetricspaces |
_version_ |
1718371846870532096 |