Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
We establish trace theorems for function spaces defined on general Ahlfors regular metric spaces Z. The results cover the Triebel-Lizorkin spaces and the Besov spaces for smoothness indices s < 1, as well as the first order Hajłasz-Sobolev space M1,p(Z). They generalize the classical results from...
Guardado en:
Autores principales: | Saksman Eero, Soto Tomás |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7bbe4aace215422695e93a81069214c4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness
por: Ziwei Li, et al.
Publicado: (2021) -
Compact Sobolev-Slobodeckij embeddings and positive solutions to fractional Laplacian equations
por: Han Qi
Publicado: (2021) -
Variation inequalities for rough singular integrals and their commutators on Morrey spaces and Besov spaces
por: Zhang Xiao, et al.
Publicado: (2021) -
Sobolev regularity solutions for a class of singular quasilinear ODEs
por: Zhao Xiaofeng, et al.
Publicado: (2021) -
Groundstates for Choquard type equations with weighted potentials and Hardy–Littlewood–Sobolev lower critical exponent
por: Zhou Shuai, et al.
Publicado: (2021)