Architecture and Self-Assembly of <named-content content-type="genus-species">Clostridium sporogenes</named-content> and <named-content content-type="genus-species">Clostridium botulinum</named-content> Spore Surfaces Illustrate a General Protective Strategy across Spore Formers

ABSTRACT Spores, the infectious agents of many Firmicutes, are remarkably resilient cell forms. Even distant relatives can have similar spore architectures although some display unique features; they all incorporate protective proteinaceous envelopes. We previously found that Bacillus spores can ach...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Thamarai K. Janganan, Nic Mullin, Ainhoa Dafis-Sagarmendi, Jason Brunt, Svetomir B. Tzokov, Sandra Stringer, Anne Moir, Roy R. Chaudhuri, Robert P. Fagan, Jamie K. Hobbs, Per A. Bullough
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://doaj.org/article/7bd935c6f4e94432b36d8dd58aebc632
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7bd935c6f4e94432b36d8dd58aebc632
record_format dspace
spelling oai:doaj.org-article:7bd935c6f4e94432b36d8dd58aebc6322021-11-15T15:30:51ZArchitecture and Self-Assembly of <named-content content-type="genus-species">Clostridium sporogenes</named-content> and <named-content content-type="genus-species">Clostridium botulinum</named-content> Spore Surfaces Illustrate a General Protective Strategy across Spore Formers10.1128/mSphere.00424-202379-5042https://doaj.org/article/7bd935c6f4e94432b36d8dd58aebc6322020-08-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSphere.00424-20https://doaj.org/toc/2379-5042ABSTRACT Spores, the infectious agents of many Firmicutes, are remarkably resilient cell forms. Even distant relatives can have similar spore architectures although some display unique features; they all incorporate protective proteinaceous envelopes. We previously found that Bacillus spores can achieve these protective properties through extensive disulfide cross-linking of self-assembled arrays of cysteine-rich proteins. We predicted that this could be a mechanism employed by spore formers in general, even those from other genera. Here, we tested this by revealing in nanometer detail how the outer envelope (exosporium) in Clostridium sporogenes (surrogate for C. botulinum group I), and in other clostridial relatives, forms a hexagonally symmetric semipermeable array. A cysteine-rich protein, CsxA, when expressed in Escherichia coli, self-assembles into a highly thermally stable structure identical to that of the native exosporium. Like the exosporium, CsxA arrays require harsh “reducing” conditions for disassembly. We conclude that in vivo, CsxA self-organizes into a highly resilient, disulfide cross-linked array decorated with additional protein appendages enveloping the forespore. This pattern is remarkably similar to that in Bacillus spores, despite a lack of protein homology. In both cases, intracellular disulfide formation is favored by the high lattice symmetry. We have identified cysteine-rich proteins in many distantly related spore formers and propose that they may adopt a similar strategy for intracellular assembly of robust protective structures. IMPORTANCE Bacteria such as those causing botulism and anthrax survive harsh conditions and spread disease as spores. Distantly related species have similar spore architectures with protective proteinaceous layers aiding adhesion and targeting. The structures that confer these common properties are largely unstudied, and the proteins involved can be very dissimilar in sequence. We identify CsxA as a cysteine-rich protein that self-assembles in a two-dimensional lattice enveloping the spores of several Clostridium species. We show that apparently unrelated cysteine-rich proteins from very different species can self-assemble to form remarkably similar and robust structures. We propose that diverse cysteine-rich proteins identified in the genomes of a broad range of spore formers may adopt a similar strategy for assembly.Thamarai K. JangananNic MullinAinhoa Dafis-SagarmendiJason BruntSvetomir B. TzokovSandra StringerAnne MoirRoy R. ChaudhuriRobert P. FaganJamie K. HobbsPer A. BulloughAmerican Society for MicrobiologyarticleBacillus anthracisBacillus cereusBacillus subtilisClostridium difficileanaerobesatomic force microscopyMicrobiologyQR1-502ENmSphere, Vol 5, Iss 4 (2020)
institution DOAJ
collection DOAJ
language EN
topic Bacillus anthracis
Bacillus cereus
Bacillus subtilis
Clostridium difficile
anaerobes
atomic force microscopy
Microbiology
QR1-502
spellingShingle Bacillus anthracis
Bacillus cereus
Bacillus subtilis
Clostridium difficile
anaerobes
atomic force microscopy
Microbiology
QR1-502
Thamarai K. Janganan
Nic Mullin
Ainhoa Dafis-Sagarmendi
Jason Brunt
Svetomir B. Tzokov
Sandra Stringer
Anne Moir
Roy R. Chaudhuri
Robert P. Fagan
Jamie K. Hobbs
Per A. Bullough
Architecture and Self-Assembly of <named-content content-type="genus-species">Clostridium sporogenes</named-content> and <named-content content-type="genus-species">Clostridium botulinum</named-content> Spore Surfaces Illustrate a General Protective Strategy across Spore Formers
description ABSTRACT Spores, the infectious agents of many Firmicutes, are remarkably resilient cell forms. Even distant relatives can have similar spore architectures although some display unique features; they all incorporate protective proteinaceous envelopes. We previously found that Bacillus spores can achieve these protective properties through extensive disulfide cross-linking of self-assembled arrays of cysteine-rich proteins. We predicted that this could be a mechanism employed by spore formers in general, even those from other genera. Here, we tested this by revealing in nanometer detail how the outer envelope (exosporium) in Clostridium sporogenes (surrogate for C. botulinum group I), and in other clostridial relatives, forms a hexagonally symmetric semipermeable array. A cysteine-rich protein, CsxA, when expressed in Escherichia coli, self-assembles into a highly thermally stable structure identical to that of the native exosporium. Like the exosporium, CsxA arrays require harsh “reducing” conditions for disassembly. We conclude that in vivo, CsxA self-organizes into a highly resilient, disulfide cross-linked array decorated with additional protein appendages enveloping the forespore. This pattern is remarkably similar to that in Bacillus spores, despite a lack of protein homology. In both cases, intracellular disulfide formation is favored by the high lattice symmetry. We have identified cysteine-rich proteins in many distantly related spore formers and propose that they may adopt a similar strategy for intracellular assembly of robust protective structures. IMPORTANCE Bacteria such as those causing botulism and anthrax survive harsh conditions and spread disease as spores. Distantly related species have similar spore architectures with protective proteinaceous layers aiding adhesion and targeting. The structures that confer these common properties are largely unstudied, and the proteins involved can be very dissimilar in sequence. We identify CsxA as a cysteine-rich protein that self-assembles in a two-dimensional lattice enveloping the spores of several Clostridium species. We show that apparently unrelated cysteine-rich proteins from very different species can self-assemble to form remarkably similar and robust structures. We propose that diverse cysteine-rich proteins identified in the genomes of a broad range of spore formers may adopt a similar strategy for assembly.
format article
author Thamarai K. Janganan
Nic Mullin
Ainhoa Dafis-Sagarmendi
Jason Brunt
Svetomir B. Tzokov
Sandra Stringer
Anne Moir
Roy R. Chaudhuri
Robert P. Fagan
Jamie K. Hobbs
Per A. Bullough
author_facet Thamarai K. Janganan
Nic Mullin
Ainhoa Dafis-Sagarmendi
Jason Brunt
Svetomir B. Tzokov
Sandra Stringer
Anne Moir
Roy R. Chaudhuri
Robert P. Fagan
Jamie K. Hobbs
Per A. Bullough
author_sort Thamarai K. Janganan
title Architecture and Self-Assembly of <named-content content-type="genus-species">Clostridium sporogenes</named-content> and <named-content content-type="genus-species">Clostridium botulinum</named-content> Spore Surfaces Illustrate a General Protective Strategy across Spore Formers
title_short Architecture and Self-Assembly of <named-content content-type="genus-species">Clostridium sporogenes</named-content> and <named-content content-type="genus-species">Clostridium botulinum</named-content> Spore Surfaces Illustrate a General Protective Strategy across Spore Formers
title_full Architecture and Self-Assembly of <named-content content-type="genus-species">Clostridium sporogenes</named-content> and <named-content content-type="genus-species">Clostridium botulinum</named-content> Spore Surfaces Illustrate a General Protective Strategy across Spore Formers
title_fullStr Architecture and Self-Assembly of <named-content content-type="genus-species">Clostridium sporogenes</named-content> and <named-content content-type="genus-species">Clostridium botulinum</named-content> Spore Surfaces Illustrate a General Protective Strategy across Spore Formers
title_full_unstemmed Architecture and Self-Assembly of <named-content content-type="genus-species">Clostridium sporogenes</named-content> and <named-content content-type="genus-species">Clostridium botulinum</named-content> Spore Surfaces Illustrate a General Protective Strategy across Spore Formers
title_sort architecture and self-assembly of <named-content content-type="genus-species">clostridium sporogenes</named-content> and <named-content content-type="genus-species">clostridium botulinum</named-content> spore surfaces illustrate a general protective strategy across spore formers
publisher American Society for Microbiology
publishDate 2020
url https://doaj.org/article/7bd935c6f4e94432b36d8dd58aebc632
work_keys_str_mv AT thamaraikjanganan architectureandselfassemblyofnamedcontentcontenttypegenusspeciesclostridiumsporogenesnamedcontentandnamedcontentcontenttypegenusspeciesclostridiumbotulinumnamedcontentsporesurfacesillustrateageneralprotectivestrategyacrosssporeformers
AT nicmullin architectureandselfassemblyofnamedcontentcontenttypegenusspeciesclostridiumsporogenesnamedcontentandnamedcontentcontenttypegenusspeciesclostridiumbotulinumnamedcontentsporesurfacesillustrateageneralprotectivestrategyacrosssporeformers
AT ainhoadafissagarmendi architectureandselfassemblyofnamedcontentcontenttypegenusspeciesclostridiumsporogenesnamedcontentandnamedcontentcontenttypegenusspeciesclostridiumbotulinumnamedcontentsporesurfacesillustrateageneralprotectivestrategyacrosssporeformers
AT jasonbrunt architectureandselfassemblyofnamedcontentcontenttypegenusspeciesclostridiumsporogenesnamedcontentandnamedcontentcontenttypegenusspeciesclostridiumbotulinumnamedcontentsporesurfacesillustrateageneralprotectivestrategyacrosssporeformers
AT svetomirbtzokov architectureandselfassemblyofnamedcontentcontenttypegenusspeciesclostridiumsporogenesnamedcontentandnamedcontentcontenttypegenusspeciesclostridiumbotulinumnamedcontentsporesurfacesillustrateageneralprotectivestrategyacrosssporeformers
AT sandrastringer architectureandselfassemblyofnamedcontentcontenttypegenusspeciesclostridiumsporogenesnamedcontentandnamedcontentcontenttypegenusspeciesclostridiumbotulinumnamedcontentsporesurfacesillustrateageneralprotectivestrategyacrosssporeformers
AT annemoir architectureandselfassemblyofnamedcontentcontenttypegenusspeciesclostridiumsporogenesnamedcontentandnamedcontentcontenttypegenusspeciesclostridiumbotulinumnamedcontentsporesurfacesillustrateageneralprotectivestrategyacrosssporeformers
AT royrchaudhuri architectureandselfassemblyofnamedcontentcontenttypegenusspeciesclostridiumsporogenesnamedcontentandnamedcontentcontenttypegenusspeciesclostridiumbotulinumnamedcontentsporesurfacesillustrateageneralprotectivestrategyacrosssporeformers
AT robertpfagan architectureandselfassemblyofnamedcontentcontenttypegenusspeciesclostridiumsporogenesnamedcontentandnamedcontentcontenttypegenusspeciesclostridiumbotulinumnamedcontentsporesurfacesillustrateageneralprotectivestrategyacrosssporeformers
AT jamiekhobbs architectureandselfassemblyofnamedcontentcontenttypegenusspeciesclostridiumsporogenesnamedcontentandnamedcontentcontenttypegenusspeciesclostridiumbotulinumnamedcontentsporesurfacesillustrateageneralprotectivestrategyacrosssporeformers
AT perabullough architectureandselfassemblyofnamedcontentcontenttypegenusspeciesclostridiumsporogenesnamedcontentandnamedcontentcontenttypegenusspeciesclostridiumbotulinumnamedcontentsporesurfacesillustrateageneralprotectivestrategyacrosssporeformers
_version_ 1718427893784117248