Building Extraction from Remote Sensing Images with Sparse Token Transformers
Deep learning methods have achieved considerable progress in remote sensing image building extraction. Most building extraction methods are based on Convolutional Neural Networks (CNN). Recently, vision transformers have provided a better perspective for modeling long-range context in images, but us...
Guardado en:
Autores principales: | Keyan Chen, Zhengxia Zou, Zhenwei Shi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7be1cf5f7cac4b119ac30e1cde47d610 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Attention Enhanced U-Net for Building Extraction from Farmland Based on Google and WorldView-2 Remote Sensing Images
por: Chuangnong Li, et al.
Publicado: (2021) -
Water extraction model of multispectral optical remote sensing image
por: DENG Kaiyuan, et al.
Publicado: (2021) - Remote sensing
-
Memory-Augmented Transformer for Remote Sensing Image Semantic Segmentation
por: Xin Zhao, et al.
Publicado: (2021) - Remote sensing letters