A linear formulation with O(n2) variables for quadratic assignment problems with Manhattan distance matrices
We present O(n2)an integer linear formulation that uses the so-called “distance variables” to solve the quadratic assignment problem (QAP). The formulation performs particularly well for problems with Manhattan distance matrices. It involves O(n2) variables. Valid equalities and inequalities are pro...
Guardado en:
Autores principales: | Serigne Gueye, Philippe Michelon |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7c02ee14063840faa708442c3aa2a222 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On global optimization with indefinite quadratics
por: Marcia Fampa, et al.
Publicado: (2017) -
Formulations and exact algorithms for the distance-constrained generalized directed rural postman problem
por: Thais Ávila, et al.
Publicado: (2017) -
A polyhedral approach to the generalized minimum labeling spanning tree problem
por: ThiagoGouveiada Silva, et al.
Publicado: (2019) -
A tight MIP formulation of the unit commitment problem with start-up and shut-down constraints
por: C. Gentile, et al.
Publicado: (2017) -
Formulations and algorithms for the recoverable Γ-robust knapsack problem
por: Christina Büsing, et al.
Publicado: (2019)