In vivo imaging of phosphocreatine with artificial neural networks
Phosphocreatine plays a vital role in cellular energetic homeostasis, but there are no routine diagnostic tests to noninvasively map the distribution with clinically relevant spatial resolution. Here, the authors develop and validate a noninvasive approach for quantifying and imaging phosphocreatine...
Guardado en:
Autores principales: | Lin Chen, Michael Schär, Kannie W. Y. Chan, Jianpan Huang, Zhiliang Wei, Hanzhang Lu, Qin Qin, Robert G. Weiss, Peter C. M. van Zijl, Jiadi Xu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7c062cc4830f4f56a3e0cc4452522c11 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Microwave Imaging of the Neck by Means of Artificial Neural Networks for Tumor Detection
por: Chiara Dachena, et al.
Publicado: (2021) -
Peak learning of mass spectrometry imaging data using artificial neural networks
por: Walid M. Abdelmoula, et al.
Publicado: (2021) -
Training Optimization for Artificial Neural Networks
por: Primitivo Toribio Luna, et al.
Publicado: (2010) -
Morphology Clustering Software for AFM Images, Based on Particle Isolation and Artificial Neural Networks
por: Soledad Delgado, et al.
Publicado: (2019) -
Brain-inspired replay for continual learning with artificial neural networks
por: Gido M. van de Ven, et al.
Publicado: (2020)