Crowdsourced privacy-preserved feature tagging of short home videos for machine learning ASD detection
Abstract Standard medical diagnosis of mental health conditions requires licensed experts who are increasingly outnumbered by those at risk, limiting reach. We test the hypothesis that a trustworthy crowd of non-experts can efficiently annotate behavioral features needed for accurate machine learnin...
Guardado en:
Autores principales: | Peter Washington, Qandeel Tariq, Emilie Leblanc, Brianna Chrisman, Kaitlyn Dunlap, Aaron Kline, Haik Kalantarian, Yordan Penev, Kelley Paskov, Catalin Voss, Nathaniel Stockham, Maya Varma, Arman Husic, Jack Kent, Nick Haber, Terry Winograd, Dennis P. Wall |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7c1e977803b04ec7833a0f2e6600ab08 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Crowdsourcing Our National Gut
por: Laura E. Grieneisen, et al.
Publicado: (2018) -
El Arte del Crowdsourcing
Publicado: (2011) -
Privacy-preserving FairSwap: Fairness and privacy interplay
por: Avizheh Sepideh, et al.
Publicado: (2022) -
Mitigating Herding in Hierarchical Crowdsourcing Networks
por: Han Yu, et al.
Publicado: (2016) -
Crowdsourcing Platforms as Devices to Activate Subjectivities
por: Elisabetta Risi, et al.
Publicado: (2019)