A combined convolutional and recurrent neural network for enhanced glaucoma detection
Abstract Glaucoma, a leading cause of blindness, is a multifaceted disease with several patho-physiological features manifesting in single fundus images (e.g., optic nerve cupping) as well as fundus videos (e.g., vascular pulsatility index). Current convolutional neural networks (CNNs) developed to...
Guardado en:
Autores principales: | Soheila Gheisari, Sahar Shariflou, Jack Phu, Paul J. Kennedy, Ashish Agar, Michael Kalloniatis, S. Mojtaba Golzan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7c2228465968407c9872f6dbb79a31c4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automated detection of mouse scratching behaviour using convolutional recurrent neural network
por: Koji Kobayashi, et al.
Publicado: (2021) -
Comparing recurrent convolutional neural networks for large scale bird species classification
por: Gaurav Gupta, et al.
Publicado: (2021) -
A convolutional recurrent neural network with attention framework for speech separation in monaural recordings
por: Chao Sun, et al.
Publicado: (2021) -
Automated stomata detection in oil palm with convolutional neural network
por: Qi Bin Kwong, et al.
Publicado: (2021) -
Deep convolutional neural networks for accurate somatic mutation detection
por: Sayed Mohammad Ebrahim Sahraeian, et al.
Publicado: (2019)