Spatial prediction of flood-prone areas using geographically weighted regression
An important non-structural solution in flood management is susceptibility mapping, which identifies the likelihood of flood occurrence in an area. Although various models have been applied in flood susceptibility mapping with different successes, Geographically Weighted Regression [GWR] has not bee...
Guardado en:
Autores principales: | Jia Min Lin, Lawal Billa |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7c23e7d5948d440797756199163eb3ce |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Daily Flood Monitoring Based on Spaceborne GNSS-R Data: A Case Study on Henan, China
por: Wentao Yang, et al.
Publicado: (2021) -
Cartographie de l’aléa de submersion marine et PPR : éléments de réflexion à partir de l’analyse de la commune de Guissény (Finistère, France)
por: Jean-Marie Cariolet, et al.
Publicado: (2012) -
A GIS-Based Approach for Flood Risk Zoning by Combining Social Vulnerability and Flood Susceptibility: A Case Study of Nanjing, China
por: Yi Chen, et al.
Publicado: (2021) -
A new multiple return-period framework of flood regulation service—applied in Yangtze River basin
por: Ju Shen, et al.
Publicado: (2021) -
Regression and Simulation Models for Human and Baboon Brain Parameters
por: Pokhariyal,Ganesh, et al.
Publicado: (2011)