Fast principal component analysis of large-scale genome-wide data.
Principal component analysis (PCA) is routinely used to analyze genome-wide single-nucleotide polymorphism (SNP) data, for detecting population structure and potential outliers. However, the size of SNP datasets has increased immensely in recent years and PCA of large datasets has become a time cons...
Guardado en:
Autores principales: | Gad Abraham, Michael Inouye |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7c52eb15209244efa849360d96256343 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Classification of cannabis strains in the Canadian market with discriminant analysis of principal components using genome-wide single nucleotide polymorphisms.
por: Dan Jin, et al.
Publicado: (2021) -
Large-scale pathway-based analysis of bladder cancer genome-wide association data from five studies of European background.
por: Idan Menashe, et al.
Publicado: (2012) -
Genome-wide Analysis of Large-scale Longitudinal Outcomes using Penalization —GALLOP algorithm
por: Karolina Sikorska, et al.
Publicado: (2018) -
Genome-wide identification of directed gene networks using large-scale population genomics data
por: René Luijk, et al.
Publicado: (2018) -
Fast data-driven learning of parallel MRI sampling patterns for large scale problems
por: Marcelo V. W. Zibetti, et al.
Publicado: (2021)