Hadoop Data Reduction Framework: Applying Data Reduction at the DFS Layer
Big-data processing systems such as Hadoop, which usually utilize distributed file systems (DFSs), require data reduction schemes to maximize storage space efficiency. These schemes have different tradeoffs, and there are no all-purpose schemes applicable to all data. Users must select a suitable sc...
Guardado en:
Autores principales: | Ryan Nathanael Soenjoto Widodo, Hirotake Abe, Kazuhiko Kato |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7c5afee34aef437296b7e64a59170164 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ejemplos de Aplicabilidad de Giraph y Hadoop para el Procesamiento de Grandes Grafos
por: Valenzuela,Sebastián A, et al.
Publicado: (2016) -
Big-data Management using Map Reduce on Cloud: Case study, EEG Images' Data
por: Sahar Mahdie Klim, et al.
Publicado: (2017) -
The research of social processes at the university using big data
por: Hacimahmud Abdullayev Vugar, et al.
Publicado: (2021) -
Fingerprint-Based Data Deduplication Using a Mathematical Bounded Linear Hash Function
por: Ahmed Sardar M. Saeed, et al.
Publicado: (2021) -
Intelligent Performance Prediction: The Use Case of a Hadoop Cluster
por: Dimitris Uzunidis, et al.
Publicado: (2021)