Synthesis of pH stable, blue light-emitting diode-excited, fluorescent silica nanoparticles and effects on cell behavior
Shin-Woo Ha,1 Jin-Kyu Lee,2 George R Beck Jr1,3,4 1Division of Endocrinology, Department of Medicine, Emory University, Atlanta, GA, USA; 2Department of Chemistry, Seoul National University, Seoul, South Korea; 3The Atlanta Department of Veterans Affairs Medical Center, Decatur, 4The Winship Cancer...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7c6dc3ce69dd47a68fdd4d2640ecab58 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Shin-Woo Ha,1 Jin-Kyu Lee,2 George R Beck Jr1,3,4 1Division of Endocrinology, Department of Medicine, Emory University, Atlanta, GA, USA; 2Department of Chemistry, Seoul National University, Seoul, South Korea; 3The Atlanta Department of Veterans Affairs Medical Center, Decatur, 4The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA Abstract: To date, delivery of light-emitting diode (LED)-activated compounds to cells and tissue remains a challenge. Silica-based materials possess good biocompatibility and have advantages of control of size and shape. Fluorescent silica nanoparticles (NPs) have been synthesized and used for applications such as cell tracking and tumor identification. Here, we report the synthesis and optimization of fluorescent silica NPs, which incorporate a naphthalimide dye with triethoxysilanes that are excited by the blue LED wavelength (LEDex NPs). The NPs can be imaged in the 420–470 nm wavelength, demonstrate a high quantum yield, are stable in a range of pH, and are taken into the cells. Therefore, these NPs represent a novel imaging technology for biomedical applications. Keywords: naphthalimide, imaging, bone marrow stromal cell migration, reduced toxicity |
---|