Machine learning predicts treatment sensitivity in multiple myeloma based on molecular and clinical information coupled with drug response.
Providing treatment sensitivity stratification at the time of cancer diagnosis allows better allocation of patients to alternative treatment options. Despite many clinical and biological risk markers having been associated with variable survival in cancer, assessing the interplay of these markers th...
Guardado en:
Autores principales: | Lucas Venezian Povoa, Carlos Henrique Costa Ribeiro, Israel Tojal da Silva |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7c77c80bec084898ae71b113c9779f59 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The molecular make up of smoldering myeloma highlights the evolutionary pathways leading to multiple myeloma
por: Eileen M. Boyle, et al.
Publicado: (2021) -
Next generation proteomics with drug sensitivity screening identifies sub-clones informing therapeutic and drug development strategies for multiple myeloma patients
por: Ciara Tierney, et al.
Publicado: (2021) -
Multiple myeloma
por: Larisa P. Mendeleeva, et al.
Publicado: (2021) -
Molecular Mechanisms of Cereblon-Interacting Small Molecules in Multiple Myeloma Therapy
por: Matteo Costacurta, et al.
Publicado: (2021) -
Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma
por: Richa Bajpai, et al.
Publicado: (2020)