Control Chart Patterns Recognition Based on Optimized Deep Belief Neural Network and Data Information Enhancement
Control chart patterns (CCPs) are often used for quality control in the manufacturing process, and effective recognition of these patterns is critical to manufacturing. In the dynamic production process, the raw data and features of CCPs are used to recognize or further predict the trends. However,...
Enregistré dans:
Auteurs principaux: | Hongyan Chu, Kailin Zhao, Qiang Cheng, Rui Li, Congbin Yang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7c7bfb02ab8e48ee87084f21fca551ab |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Monitoring and Identifying Wind Turbine Generator Bearing Faults Using Deep Belief Network and EWMA Control Charts
par: Huajin Li, et autres
Publié: (2021) -
A New Modulation Recognition Method Based on Flying Fish Swarm Algorithm
par: Jingpeng Gao, et autres
Publié: (2021) -
B-MFO: A Binary Moth-Flame Optimization for Feature Selection from Medical Datasets
par: Mohammad H. Nadimi-Shahraki, et autres
Publié: (2021) -
Green Building Energy Cost Optimization With Deep Belief Network and Firefly Algorithm
par: Yan Liao, et autres
Publié: (2021) -
Rolling bearing fault detection based on vibration signal analysis and cumulative sum control chart
par: Mohammed Jawad Saja, et autres
Publié: (2021)