MicroRNA-151a-3p Functions in the Regulation of Osteoclast Differentiation: Significance to Postmenopausal Osteoporosis
Yuehui He, Di Chen, Qian Guo, Pinghua Shi, Conglei You, Yanping Feng Community Medicine Department, Beijing Jishuitan Hospital, Beijing City, 100096, People’s Republic of ChinaCorrespondence: Di ChenCommunity Medicine Department, Beijing Jishuitan Hospital, No. 68, Huinanbei Road, Huilongguan Town,...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7c7c87cd3de945ae9fa022ac34cdc227 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7c7c87cd3de945ae9fa022ac34cdc227 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7c7c87cd3de945ae9fa022ac34cdc2272021-12-02T16:11:44ZMicroRNA-151a-3p Functions in the Regulation of Osteoclast Differentiation: Significance to Postmenopausal Osteoporosis1178-1998https://doaj.org/article/7c7c87cd3de945ae9fa022ac34cdc2272021-07-01T00:00:00Zhttps://www.dovepress.com/microrna-151a-3p-functions-in-the-regulation-of-osteoclast-differentia-peer-reviewed-fulltext-article-CIAhttps://doaj.org/toc/1178-1998Yuehui He, Di Chen, Qian Guo, Pinghua Shi, Conglei You, Yanping Feng Community Medicine Department, Beijing Jishuitan Hospital, Beijing City, 100096, People’s Republic of ChinaCorrespondence: Di ChenCommunity Medicine Department, Beijing Jishuitan Hospital, No. 68, Huinanbei Road, Huilongguan Town, Changping District, Beijing City, 100096, People’s Republic of ChinaEmail zr4560@163.comBackground: Studies have found the pivotal role of miRNAs in the progression of postmenopausal osteoporosis (OP). However, the function of miRNAs in OP is unclear. This study aimed to explore the biological functions of microRNA-151a-3p in OP.Methods: RT-qPCR was employed to assess the expression of microRNA-151a-3p in serum isolated from OP patients and healthy controls. Dual-energy X-ray absorptiometry (DXA) was used to measure the bone mineral density (BMD) of the lumbar spine. The expression levels of c-Fos, NFATc1, and TRAP were tested by Western blot. Ovariectomized (OVX) rats were treated with antago microRNA-151a-3p or antago NC, and then serum and lumbar vertebrae were collected for ELISA and bone histomorphology analysis.Results: The expression of microRNA-151a-3p in postmenopausal women with osteoporosis was significantly up-regulated, and microRNA-151a-3p level was negatively correlated with BMD. During osteoclastogenesis, microRNA-151a-3p level was obviously increased. Overexpression of microRNA-151a-3p promoted the differentiation of RANKL-induced THP-1 and RAW264.7 cells into osteoclasts, whereas silencing of microRNA-151a-3p resulted in the opposite results. Silencing of microRNA-151a-3p in OVX rats altered osteoclastogenesis-related factors and raised BMD.Conclusion: MicroRNA-151a-3p could partly regulate osteoporosis by promoting osteoclast differentiation, and miRNA-151a-3p could be a potential therapeutic target for postmenopausal osteoporosis.Keywords: miRNA-151a-3p, postmenopausal osteoporosis, osteoclast differentiation, RAW264.7 cells, THP-1 cellsHe YChen DGuo QShi PYou CFeng YDove Medical Pressarticlemirna-151a-3ppostmenopausal osteoporosisosteoclast differentiationraw264.7 cellsthp-1 cellsGeriatricsRC952-954.6ENClinical Interventions in Aging, Vol Volume 16, Pp 1357-1366 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
mirna-151a-3p postmenopausal osteoporosis osteoclast differentiation raw264.7 cells thp-1 cells Geriatrics RC952-954.6 |
spellingShingle |
mirna-151a-3p postmenopausal osteoporosis osteoclast differentiation raw264.7 cells thp-1 cells Geriatrics RC952-954.6 He Y Chen D Guo Q Shi P You C Feng Y MicroRNA-151a-3p Functions in the Regulation of Osteoclast Differentiation: Significance to Postmenopausal Osteoporosis |
description |
Yuehui He, Di Chen, Qian Guo, Pinghua Shi, Conglei You, Yanping Feng Community Medicine Department, Beijing Jishuitan Hospital, Beijing City, 100096, People’s Republic of ChinaCorrespondence: Di ChenCommunity Medicine Department, Beijing Jishuitan Hospital, No. 68, Huinanbei Road, Huilongguan Town, Changping District, Beijing City, 100096, People’s Republic of ChinaEmail zr4560@163.comBackground: Studies have found the pivotal role of miRNAs in the progression of postmenopausal osteoporosis (OP). However, the function of miRNAs in OP is unclear. This study aimed to explore the biological functions of microRNA-151a-3p in OP.Methods: RT-qPCR was employed to assess the expression of microRNA-151a-3p in serum isolated from OP patients and healthy controls. Dual-energy X-ray absorptiometry (DXA) was used to measure the bone mineral density (BMD) of the lumbar spine. The expression levels of c-Fos, NFATc1, and TRAP were tested by Western blot. Ovariectomized (OVX) rats were treated with antago microRNA-151a-3p or antago NC, and then serum and lumbar vertebrae were collected for ELISA and bone histomorphology analysis.Results: The expression of microRNA-151a-3p in postmenopausal women with osteoporosis was significantly up-regulated, and microRNA-151a-3p level was negatively correlated with BMD. During osteoclastogenesis, microRNA-151a-3p level was obviously increased. Overexpression of microRNA-151a-3p promoted the differentiation of RANKL-induced THP-1 and RAW264.7 cells into osteoclasts, whereas silencing of microRNA-151a-3p resulted in the opposite results. Silencing of microRNA-151a-3p in OVX rats altered osteoclastogenesis-related factors and raised BMD.Conclusion: MicroRNA-151a-3p could partly regulate osteoporosis by promoting osteoclast differentiation, and miRNA-151a-3p could be a potential therapeutic target for postmenopausal osteoporosis.Keywords: miRNA-151a-3p, postmenopausal osteoporosis, osteoclast differentiation, RAW264.7 cells, THP-1 cells |
format |
article |
author |
He Y Chen D Guo Q Shi P You C Feng Y |
author_facet |
He Y Chen D Guo Q Shi P You C Feng Y |
author_sort |
He Y |
title |
MicroRNA-151a-3p Functions in the Regulation of Osteoclast Differentiation: Significance to Postmenopausal Osteoporosis |
title_short |
MicroRNA-151a-3p Functions in the Regulation of Osteoclast Differentiation: Significance to Postmenopausal Osteoporosis |
title_full |
MicroRNA-151a-3p Functions in the Regulation of Osteoclast Differentiation: Significance to Postmenopausal Osteoporosis |
title_fullStr |
MicroRNA-151a-3p Functions in the Regulation of Osteoclast Differentiation: Significance to Postmenopausal Osteoporosis |
title_full_unstemmed |
MicroRNA-151a-3p Functions in the Regulation of Osteoclast Differentiation: Significance to Postmenopausal Osteoporosis |
title_sort |
microrna-151a-3p functions in the regulation of osteoclast differentiation: significance to postmenopausal osteoporosis |
publisher |
Dove Medical Press |
publishDate |
2021 |
url |
https://doaj.org/article/7c7c87cd3de945ae9fa022ac34cdc227 |
work_keys_str_mv |
AT hey microrna151a3pfunctionsintheregulationofosteoclastdifferentiationsignificancetopostmenopausalosteoporosis AT chend microrna151a3pfunctionsintheregulationofosteoclastdifferentiationsignificancetopostmenopausalosteoporosis AT guoq microrna151a3pfunctionsintheregulationofosteoclastdifferentiationsignificancetopostmenopausalosteoporosis AT ship microrna151a3pfunctionsintheregulationofosteoclastdifferentiationsignificancetopostmenopausalosteoporosis AT youc microrna151a3pfunctionsintheregulationofosteoclastdifferentiationsignificancetopostmenopausalosteoporosis AT fengy microrna151a3pfunctionsintheregulationofosteoclastdifferentiationsignificancetopostmenopausalosteoporosis |
_version_ |
1718384418300624896 |