Human Sensation of Transcranial Electric Stimulation
Abstract Noninvasive transcranial electric stimulation is increasingly being used as an advantageous therapy alternative that may activate deep tissues while avoiding drug side-effects. However, not only is there limited evidence for activation of deep tissues by transcranial electric stimulation, i...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7c91d71185e34d189b431c64320a4aad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7c91d71185e34d189b431c64320a4aad |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7c91d71185e34d189b431c64320a4aad2021-12-02T15:08:46ZHuman Sensation of Transcranial Electric Stimulation10.1038/s41598-019-51792-82045-2322https://doaj.org/article/7c91d71185e34d189b431c64320a4aad2019-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-019-51792-8https://doaj.org/toc/2045-2322Abstract Noninvasive transcranial electric stimulation is increasingly being used as an advantageous therapy alternative that may activate deep tissues while avoiding drug side-effects. However, not only is there limited evidence for activation of deep tissues by transcranial electric stimulation, its evoked human sensation is understudied and often dismissed as a placebo or secondary effect. By systematically characterizing the human sensation evoked by transcranial alternating-current stimulation, we observed not only stimulus frequency and electrode position dependencies specific for auditory and visual sensation but also a broader presence of somatic sensation ranging from touch and vibration to pain and pressure. We found generally monotonic input-output functions at suprathreshold levels, and often multiple types of sensation occurring simultaneously in response to the same electric stimulation. We further used a recording circuit embedded in a cochlear implant to directly and objectively measure the amount of transcranial electric stimulation reaching the auditory nerve, a deep intercranial target located in the densest bone of the skull. We found an optimal configuration using an ear canal electrode and low-frequency (<300 Hz) sinusoids that delivered maximally ~1% of the transcranial current to the auditory nerve, which was sufficient to produce sound sensation even in deafened ears. Our results suggest that frequency resonance due to neuronal intrinsic electric properties need to be explored for targeted deep brain stimulation and novel brain-computer interfaces.Fan-Gang ZengPhillip TranMatthew RichardsonShuping SunYuchen XuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 9, Iss 1, Pp 1-12 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Fan-Gang Zeng Phillip Tran Matthew Richardson Shuping Sun Yuchen Xu Human Sensation of Transcranial Electric Stimulation |
description |
Abstract Noninvasive transcranial electric stimulation is increasingly being used as an advantageous therapy alternative that may activate deep tissues while avoiding drug side-effects. However, not only is there limited evidence for activation of deep tissues by transcranial electric stimulation, its evoked human sensation is understudied and often dismissed as a placebo or secondary effect. By systematically characterizing the human sensation evoked by transcranial alternating-current stimulation, we observed not only stimulus frequency and electrode position dependencies specific for auditory and visual sensation but also a broader presence of somatic sensation ranging from touch and vibration to pain and pressure. We found generally monotonic input-output functions at suprathreshold levels, and often multiple types of sensation occurring simultaneously in response to the same electric stimulation. We further used a recording circuit embedded in a cochlear implant to directly and objectively measure the amount of transcranial electric stimulation reaching the auditory nerve, a deep intercranial target located in the densest bone of the skull. We found an optimal configuration using an ear canal electrode and low-frequency (<300 Hz) sinusoids that delivered maximally ~1% of the transcranial current to the auditory nerve, which was sufficient to produce sound sensation even in deafened ears. Our results suggest that frequency resonance due to neuronal intrinsic electric properties need to be explored for targeted deep brain stimulation and novel brain-computer interfaces. |
format |
article |
author |
Fan-Gang Zeng Phillip Tran Matthew Richardson Shuping Sun Yuchen Xu |
author_facet |
Fan-Gang Zeng Phillip Tran Matthew Richardson Shuping Sun Yuchen Xu |
author_sort |
Fan-Gang Zeng |
title |
Human Sensation of Transcranial Electric Stimulation |
title_short |
Human Sensation of Transcranial Electric Stimulation |
title_full |
Human Sensation of Transcranial Electric Stimulation |
title_fullStr |
Human Sensation of Transcranial Electric Stimulation |
title_full_unstemmed |
Human Sensation of Transcranial Electric Stimulation |
title_sort |
human sensation of transcranial electric stimulation |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/7c91d71185e34d189b431c64320a4aad |
work_keys_str_mv |
AT fangangzeng humansensationoftranscranialelectricstimulation AT philliptran humansensationoftranscranialelectricstimulation AT matthewrichardson humansensationoftranscranialelectricstimulation AT shupingsun humansensationoftranscranialelectricstimulation AT yuchenxu humansensationoftranscranialelectricstimulation |
_version_ |
1718388007734607872 |