Completely stopping microwaves with extremely enhanced magnetic fields

Abstract A microwave one-way waveguide of three-dimensional configuration is proposed and investigated theoretically. In this waveguide there exists a complete one-way propagation band, where the mode propagates only in one direction and can be immune to backscattering. By terminating the one-way wa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Qian Shen, Lujun Hong, Xiaohua Deng, Linfang Shen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/7c988238e29643429f60ed4206c19913
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract A microwave one-way waveguide of three-dimensional configuration is proposed and investigated theoretically. In this waveguide there exists a complete one-way propagation band, where the mode propagates only in one direction and can be immune to backscattering. By terminating the one-way waveguide with metal slab, one-way propagating waves in this waveguide system can be stopped at the terminal end without any backscattering. Meanwhile, a hotspot with extremely enhanced magnetic-field amplitude is generated in this 3D waveguide system. For an incident microwave pulse, the trapped wave packet can be compressed to deep subwavelength scale besides the magnetic field enhancement. Moreover, the magnetic field enhancement of trapped waves can be further largely increased by tapering laterally the waveguide system. The approach for trapping microwaves has promising applications in magnetic sensing and magnetic non-linearity.