Path Planning for Underwater Information Gathering Based on Genetic Algorithms and Data Stochastic Models
Recent technological developments have paved the way to the employment of Autonomous Underwater Vehicles (AUVs) for monitoring and exploration activities of marine environments. Traditionally, in information gathering scenarios for monitoring purposes, AUVs follow predefined paths that are not effic...
Guardado en:
Autores principales: | Matteo Bresciani, Francesco Ruscio, Simone Tani, Giovanni Peralta, Andrea Timperi, Eric Guerrero-Font, Francisco Bonin-Font, Andrea Caiti, Riccardo Costanzi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7cb8ecfc1b78463db6da0d5b7d120e71 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
AUV Obstacle Avoidance Planning Based on Deep Reinforcement Learning
por: Jianya Yuan, et al.
Publicado: (2021) -
Sea Surface Temperature: From Observation to Applications
por: Francisco Pastor
Publicado: (2021) -
Evaluation of Boulder Deposits Linked to Late Neogene Hurricane Events
por: Markes E. Johnson, et al.
Publicado: (2021) -
Offshore and Onshore Wave Energy Converters: Engineering and Environmental Features
por: Luca Cavallaro, et al.
Publicado: (2021) -
Energy Consumption Modeling for Underwater Gliders Considering Ocean Currents and Seawater Density Variation
por: Yang Song, et al.
Publicado: (2021)