Using multivariate regression model with least absolute shrinkage and selection operator (LASSO) to predict the incidence of Xerostomia after intensity-modulated radiotherapy for head and neck cancer.
<h4>Purpose</h4>The aim of this study was to develop a multivariate logistic regression model with least absolute shrinkage and selection operator (LASSO) to make valid predictions about the incidence of moderate-to-severe patient-rated xerostomia among head and neck cancer (HNC) patient...
Saved in:
Main Authors: | Tsair-Fwu Lee, Pei-Ju Chao, Hui-Min Ting, Liyun Chang, Yu-Jie Huang, Jia-Ming Wu, Hung-Yu Wang, Mong-Fong Horng, Chun-Ming Chang, Jen-Hong Lan, Ya-Yu Huang, Fu-Min Fang, Stephen Wan Leung |
---|---|
Format: | article |
Language: | EN |
Published: |
Public Library of Science (PLoS)
2014
|
Subjects: | |
Online Access: | https://doaj.org/article/7cc338c7e96c40adb68d93ff2f34ced3 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Manejo actual de la xerostomía
by: Ulloa B,J Patricio, et al.
Published: (2016) -
Latest Advancement in the Management of Xerostomia: A Review
by: Venetia Aranha, et al.
Published: (2021) -
Minor Salivary Glands Morphology in Xerostomia Patients
by: Liquidato,Bianca Maria, et al.
Published: (2006) -
LASSO and Bioinformatics Analysis in the Identification of Key Genes for Prognostic Genes of Gynecologic Cancer
by: Shao-Hua Yu, et al.
Published: (2021) -
Lasso Proteins—Unifying Cysteine Knots and Miniproteins
by: Bartosz Ambroży Greń, et al.
Published: (2021)